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Abstract

We address the challenge of training diffusion models to sample from unnormalized
energy distributions in the absence of data, the so-called diffusion samplers.
Although these approaches have shown promise, they struggle to scale in more
demanding scenarios where energy evaluations are expensive and the sampling
space is high-dimensional. To address this limitation, we propose a scalable
and sample-efficient framework that properly harmonizes the powerful classical
sampling method and the diffusion sampler. Specifically, we utilize Monte Carlo
Markov chain (MCMC) samplers with a novelty-based auxiliary energy as a
Searcher to collect off-policy samples, using an auxiliary energy function to com-
pensate for exploring modes the diffusion sampler rarely visits. These off-policy
samples are then combined with on-policy data to train the diffusion sampler,
thereby expanding its coverage of the energy landscape. Furthermore, we identify
primacy bias, i.e., the preference of samplers for early experience during training,
as the main cause of mode collapse during training, and introduce a periodic
re-initialization trick to resolve this issue. Our method significantly improves
sample efficiency on standard benchmarks for diffusion samplers and also excels
at higher-dimensional problems and real-world molecular conformer generation.

1 Introduction

Inference in unnormalized densities is a central challenge in machine learning, underlying probabilis-
tic deep learning [18, 24] and many scientific applications [32, 9]. Traditionally, Markov chain Monte
Carlo (MCMC) methods have been used, most prominently Metropolis-adjusted Langevin algorithms
(MALA) [36] and Hamiltonian Monte Carlo (HMC) [15], but they incur repeated energy-gradient
evaluations per sample. Amortized inference instead trains deep generative models to map noise
to samples, enabling evaluation-free generation at test time and promising orders-of-magnitude
speedups once the model is trained.

Researchers have recently focused on diffusion samplers, which parameterize continuous-time
diffusion processes with neural networks, an approach inspired by successes in high-dimensional
settings like image and text generation. The leading methods include flow-annealed importance
sampling bootstrap (FAB) [29], generative flow networks (GFlowNets) [3], denoising diffusion
samplers (DDS) [41], controlled Monte Carlo diffusion (CMCD) [42], and iterative denoising energy
matching (iDEM) [1]. Because samples from the target distribution are unavailable, these samplers
iterate between: (1) sample from the neural diffusion model, (2) query the energy, and (3) update the
model to better match the target distribution.

Despite their promise, diffusion-based samplers struggle in high dimensions. Early in training,
the neural proposal is effectively random and is not aligned with the energy landscape, leading to
sample-inefficient exploration. This is in contrast with the classic training-free samplers, e.g., MALA,
which leverage gradient information to steer proposals toward low-energy modes from the start.
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Techniques to improve the sample efficiency of diffusion samplers, like replay buffers [3] and local
energy-guided refinements [20], yield only marginal gains and fail to overcome the poor quality of
the initial diffusion samples. Indeed, He et al. [17] recently showed that nearly all effective neural
samplers rely on Langevin parametrization, i.e., incorporating energy gradients at inference, which
erodes the primary efficiency benefit of amortized sampling.

Moreover, diffusion samplers are prone to mode collapse: training on their own outputs leads to
overfitting to dominant modes, and the model “locks in” prematurely. Reinforcement learning
exploration bonuses [35] can broaden coverage, but at the cost of biasing the sampler’s target
distribution. Local perturbations [20] help, but require many expensive iterations in large state spaces.

Contribution. We propose search-guided diffusion samplers (SGDS), a simple yet powerful frame-
work that enables scalable and unbiased training of diffusion samplers in high-dimensional problems.
A training-free Markov-chain “Searcher” explores the target density augmented with an explicit
exploration reward to discover underexplored modes. The diffusion “Learner” then distills these
trajectories through the trajectory balance objective [27], preserving theoretical guarantees while
incorporating exploration.

At a high level, our SGDS operates in two stages. Stage 1: the Searcher collects informative samples
from the target (optionally with exploration incentives) to overcome the random initialization of
the Learner. The Learner is trained off-policy via trajectory balance on a mixture of Searcher- and
self-generated trajectories, rapidly improving sample efficiency. Stage 2: the Searcher employs
random network distillation (RND) bonuses [10] to probe modes the Learner has not yet covered; the
Learner then ingests these enriched trajectories using trajectory balance with weight re-initialization
to counter primacy bias [31].

We show that SGDS, despite its simplicity, produces substantial gains over baseline diffusion samplers
across benchmarks: classical Gaussian mixtures and the Manywell task; particle simulation problems
like LJ-13 and LJ-55; and a real-world molecule, Alanine Dipeptide. Our method significantly
improves sample efficiency and scalability, marking a practical path towards high-dimensional
diffusion-based inference.

2 Preliminaries

2.1 Diffusion samplers as controlled neural SDEs

Let E : R𝑑 → R be an energy function defining an unnormalized density 𝑅(𝑥) = exp
(
−E(𝑥)

)
.

Sampling from the corresponding Boltzmann distribution 𝑝target (𝑥) = 𝑅(𝑥)/𝑍 , with partition function
𝑍 =

∫
𝑅(𝑥) 𝑑𝑥, can be formulated as controlling the stochastic differential equation (SDE)

d𝑥𝑡 = 𝑢𝜃 (𝑥𝑡 , 𝑡) d𝑡 + 𝑔(𝑥𝑡 , 𝑡) d𝑤𝑡 , 𝑥0 ∼ 𝜇0, 𝑡 ∈ [0, 1], (1)

where 𝑤𝑡 is standard 𝑑-dimensional Brownian motion, 𝑢𝜃 is the drift function parameterized by 𝜃
e.g., neural networks, and 𝑔 is the diffusion function. The goal is to choose 𝜃 such that the terminal
distribution 𝑝𝜃1 induced by Equation (1) matches the target, i.e., 𝑝𝜃1 (𝑥) ∝ 𝑅(𝑥)).
Euler–Maruyama discretization. With 𝑇 uniform steps of size Δ𝑡 := 1/𝑇 , the SDE Equation (1) is
discretized via the Euler–Maruyama scheme

𝑥𝑡+Δ𝑡 = 𝑥𝑡 + 𝑢𝜃 (𝑥𝑡 , 𝑡) Δ𝑡 + 𝑔(𝑥𝑡 , 𝑡)
√
Δ𝑡 𝑧𝑡 , 𝑧𝑡 ∼ N(0, 𝐼𝑑), (2)

which defines Gaussian forward kernels 𝑃𝐹 (𝑥𝑡+Δ𝑡 | 𝑥𝑡 ; 𝜃). Analogously, one defines reference
backward kernels 𝑃𝐵 (𝑥𝑡−Δ𝑡 | 𝑥𝑡 ). Common choices for 𝑃𝐵 include Brownian motion d𝑥𝑡 = 𝛽(𝑡) d�̄�𝑡

for variance-exploding (VE) processes, the time-reversed Ornstein–Uhlenbeck (OU) kernel d𝑥𝑡 =
−𝛽(𝑡)𝑥𝑡 d𝑡 +

√︁
2𝛽(𝑡) d�̄�𝑡 for variance-preserving (VP) processes, and the Brownian bridge d𝑥𝑡 =

𝑥𝑡
𝑡

d𝑡 + 𝜎d�̄�𝑡 , where �̄�𝑡 is time-reversed Brownian motion.

The forward and backward policies for the complete trajectory 𝜏 = (𝑥0 → 𝑥Δ𝑡 → · · · → 𝑥1), denoted
by 𝑃𝐹 (𝜏; 𝜃) and 𝑃𝐵 (𝜏 | 𝑥1), repectively, are defined as compositions of these kernels across discrete
time steps:

𝑃𝐹 (𝜏; 𝜃) =
𝑇−1∏
𝑖=0

𝑃𝐹

(
𝑥 (𝑖+1)Δ𝑡 | 𝑥𝑖Δ𝑡 ; 𝜃

)
, 𝑃𝐵 (𝜏 | 𝑥1) =

𝑇−1∏
𝑖=0

𝑃𝐵

(
𝑥 (𝑖−1)Δ𝑡 | 𝑥𝑖Δ𝑡

)
. (3)
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Algorithm 1 Training search-guided diffusion samplers (SGDS)

1: Qbuffer ← ∅; fix random target net 𝑓rnd; initialize predictor 𝑓𝜙 and Learner (𝑃𝐹 (𝜏; 𝜃), log 𝑍𝜃 )
2: for 𝑟 = 1, . . . , 𝑁round do ⊲ outer rounds
3: // Searcher: gradient-guided MCMC

4: Ẽ (𝑥) ←
{
E(𝑥), 𝑟 = 1,
E(𝑥) − 𝛼

 𝑓rnd (𝑥) − 𝑓𝜙 (𝑥)
2

2, 𝑟 > 1

5: Obtain {𝑥 (𝑖)1 }
𝑀chain
𝑖=1 and log �̂� by running 𝑀chain parallel MCMC for 𝑀iter steps on Ẽ (𝑥)

6: Qbuffer ← Qbuffer ∪ {𝑥
(𝑖)
1 , E(𝑥 (𝑖)1 )}

𝑀chain
𝑖=1

7: // Learner: 𝐼 inner iterations (even iterations: on-policy, odd iterations: off-policy)
8: for 𝑖 = 1, . . . , 𝐼 do
9: if 𝑖 mod 2 = 0 then ⊲ on-policy

10: Sample {𝜏𝑘}𝐵𝑘=1∼ 𝑃𝐹 (𝜏; 𝜃)
11: X ← {𝑥1 from 𝜏𝑘}
12: else ⊲ off-policy
13: Sample X = {𝑥1}𝐵off

ℓ=1 ∼ 𝑃(· | Qbuffer)
14: Generate {𝜏ℓ }∼ 𝑃𝐵 (𝜏 | 𝑥1)
15: end if
16: LTB= 1

𝐵

∑
𝑘

[
log 𝑍𝜃𝑃𝐹 (𝜏𝑘 ;𝜃 )

𝑅 (𝑥1 )𝑃𝐵 (𝜏𝑘|𝑥1 )
]2

17: 𝜃 ← Minimize(LTB) ⊲ diffusion sampler update
18: 𝜙← Minimize

(
1
|X |

∑
𝑥1∈X ∥ 𝑓rnd (𝑥1) − 𝑓𝜙 (𝑥1)∥22

)
⊲ RND predictor update

19: end for
20: Re-initialize 𝑃𝐹 (· | 𝜃) but retain log 𝑍𝜃 ⊲ Periodic partial re-initialization
21: end for

Stochastic control of neural SDEs. Diffusion models typically minimize the forward Kull-
back–Leibler (KL) divergence

𝐷KL
(
𝑃𝐵 (𝜏 | 𝑥1) 𝑝target (𝑥1) ∥ 𝑃𝐹 (𝜏; 𝜃) 𝜇0 (𝑥0)

)
,

which presupposes abundant samples from 𝑥1 ∼ 𝑝target. When such data are unavailable, e.g., in
scientific domains, one may instead minimize the reverse KL divergence

𝐷KL
(
𝑃𝐹 (𝜏; 𝜃) 𝜇0 (𝑥0) ∥ 𝑃𝐵 (𝜏 | 𝑥1) 𝑝target (𝑥1)

)
,

using samples from 𝑥1 ∼ 𝑃𝐹 . Notable methods that optimize this objective include the path-integral
sampler (PIS) [45], which employs a VE Brownian-motion reference process, and denoising diffusion
samplers (DDS) [41], which use a VP OU reference process.

2.2 Continuous GFlowNet objective for diffusion samplers

Following Sendera et al. [38], Euler–Maruyama samplers can be interpreted as continuous generative
flow networks (GFlowNets) [23]. GFlowNets [3, 4] are off-policy reinforcement-learning algorithms
for sequential decision making samplers. Treating the initial state 𝑥0 as a point mass at the origin,
the forward policy 𝑃𝐹 acts as an agent that sequentially constructs a trajectory 𝜏. The trajectory
balance (TB) criterion [27] guarantees that the density induced by 𝑃𝐹 matches the target distribution:

𝑍𝜃 𝑃𝐹 (𝜏; 𝜃) = 𝑅(𝑥1) 𝑃𝐵 (𝜏 | 𝑥1), ∀𝜏, (4)

where 𝑍𝜃 is a learnable scalar that approximates the unknown partition function 𝑍 . Existing
GFlowNet-based samplers [44, 38] often adopt Brownian-bridge kernels for 𝑃𝐵.

Applying the TB condition to sub-trajectory of 𝜏 yields the sub-trajectory balance objective [26, 34,
44]. While this variant can improve credit assignment, it estimates marginal densities at intermediate
states with higher bias compared to the global TB estimates [38].

Off-policy property of GFlowNet-based diffusion samplers. In contrast to KL-based objectives
such as PIS or DDS, using on-policy training, GFlowNet objectives can be optimized with off-policy
trajectories drawn from any proposal distribution with full support. This flexibility enables richer
exploration strategies—noisy roll-outs [23], replay buffers, and MCMC-based local search [38]—that
are crucial for efficient sampling from multimodal distributions.
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3 Method

3.1 Search-guided diffusion samplers (SGDS): overall framework

In this section, we describe the overall framework of the search-guided diffusion samplers (SGDS).
Our SGDS combines the strengths of off-policy training from GFlowNet diffusion samplers with
the exploratory power of gradient-guided MCMC. We follow the setting of Sendera et al. [38] for
modeling GFlowNet-based diffusion samplers. Each round alternates between two roles:

Searcher (gradient-informed MCMC). The Searcher uses gradient information ∇ log 𝜋(𝑥) to
efficiently generate representative samples from the target distribution. These samples populate
a replay buffer and simultaneously provide an estimate of the log partition function, log 𝑍 . Ex-
ploration is guided by an intrinsic reward from random network distillation (RND) [10], which
identifies underexplored modes using a form of self-supervised learning.

Learner (diffusion sampler). Learner, a neural diffusion sampler, is trained by minimizing
trajectory balance loss [23], blending (i) on-policy trajectories generated from its current policy
and (ii) off-policy trajectories replayed from the buffer. Periodic re-initialization of the Learner
mitigates primacy bias, enhancing sample efficiency.

This round repeats until the Learner alone generates high-quality samples. For simple targets, training
may converge within a single round, while complex targets typically benefit from multiple rounds.

The SGDS tackles two critical challenges in existing diffusion sampling approaches:

Scalability. In high-dimensional spaces, diffusion samplers frequently miss low-energy modes,
as their generated samples rarely visit unexplored modes. The Searcher, operating as parallel
gradient-informed chains, rapidly identifies these modes. Although the samples collected from the
Searcher are biased, the trajectory balance objective enables unbiased training of the Learner.

Sample efficiency. Each expensive gradient evaluation is amortized across multiple Learner
updates through off-policy replay. The RND-driven intrinsic rewards direct the Searcher to-
wards under-explored areas, maximizing the informativeness of new samples. Periodic Learner
re-initialization prevents overfitting to initial samples and maintains replay buffer diversity. Collec-
tively, these components significantly enhance the efficiency of gradient computations.

Algorithmic details for each component follow in subsequent sections and Algorithm 1.

3.2 Searcher

The Searcher identifies low-energy modes using parallel gradient-guided Markov chains. Meth-
ods such as annealed importance sampling (AIS) [30], Metropolis-adjusted Langevin algorithms
(MALA) [36], or molecular dynamics (MD) are suitable candidates. These methods generate samples
by transporting prior samples in the direction of the target density (or its tempered density) via several
Markov chains. We use AIS and MALA for synthetic energy functions, and MD for all-atom systems.

In the initial step of the algorithm, we run 𝑀chain parallel chains, estimating log �̂� which is explained
in Appendix A. The Searcher then stores the collected samples in a replay buffer and passes the
estimated log �̂� to the Learner model. In subsequent rounds, we incorporate exploration uncertainty
from the Learner via intrinsic rewards for exploration, modifying the Searcher’s energy landscape as:

Ẽ (𝑥) = E(𝑥) − 𝛼 log 𝑟intrinsic (𝑥). (5)

Here, 𝑟intrinsic (𝑥) highlights underexplored modes based on previous Learner experiences, and the
gradient is used in the drift function of SDEs. Adding a repulsive term for exploration resembles the
core idea of metadynamics, which biases sampling away from the modes that have already been well
captured.

Random network distillation (RND). To efficiently guide exploration, we employ RND [10] to
quantify state novelty, steering the Searcher towards underexplored consists of a fixed, randomly
initialized network 𝑓 (𝑥) and a trainable predictor network 𝑓 (𝑥; 𝜙) trained by minimizing:

LRND (𝑥) = ∥ 𝑓 (𝑥) − 𝑓 (𝑥; 𝜙)∥22, (6)

and, for the Searcher in the next round, we utilize this loss as the intrinsic reward given by:

𝑟intrinsic(𝑥) = exp(∥ 𝑓 (𝑥) − 𝑓 (𝑥; 𝜙)∥22). (7)
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High prediction errors indicate novel states. RND training uses replay buffer samples and online
trajectories, assigning high novelty to underexplored modes.

3.3 Learner

With the replay buffer initialized by Searcher’s samples, the Learner minimizes the trajectory bal-
ance objective through iterative training, combining online and replay trajectories. The training
incorporates:

Loff-policy (𝜃) = E𝜏∼𝑃𝐵 (𝜏 |𝑥1 ) ,𝑥1∼𝑃 (𝑥1 |Dbuffer )
1
2

[
log

𝑍𝜃𝑃𝐹 (𝜏; 𝜃)
𝑅(𝑥1) 𝑃𝐵 (𝜏 | 𝑥1)

]2
, (8)

Lon-policy (𝜃) = E𝜏∼𝑃𝐹 (𝜏 )
1
2

[
log

𝑍𝜃𝑃𝐹 (𝜏; 𝜃)
𝑅(𝑥1) 𝑃𝐵 (𝜏 | 𝑥1)

]2
. (9)

Here 𝑃(𝑥1 | Dbuffer) denotes a rank-based sampling distribution [40] that assigns higher probability
to lower energy samples stored in the buffer, focusing replay on promising modes.

We leverage both on-policy and off-policy training signals from online trajectories and replayed
samples, with a replay ratio 𝛾 determining the frequency of replay updates (default: 𝛾 = 1).

Re-initialization. Learner re-initialization mitigates primacy bias commonly observed in reinforce-
ment learning scenarios. Primacy bias [31] refers to the model’s tendency to rely excessively on
early experiences, being trapped in low-reward or biased samples generated at initial stages, thereby
hindering the discovery of high-reward samples and underexplored modes. Periodically re-initializing
the Learner model 𝑃𝐹 (·|𝜃) alleviates this bias by resetting parameters strongly influenced by early
samples, allowing faster adaptation to recent, higher-quality experiences. Crucially, we retain the
previously learned log 𝑍𝜃 parameter and the replay buffer, preserving the accumulated knowledge
while allowing the network to recalibrate based on updated experiences.

4 Related works

Classical samplers. Classical sampling approaches primarily rely on MCMC methods. This includes
gradient-based algorithms like MALA [36] and HMC [15]. Annealing-based techniques, such as
AIS [30] and SMC [12], introduce intermediate distributions to gradually approximate complex
targets, mitigating mode collapse. While these MCMC-based methods enable sampling from the
complex unnormalized density, they require long trajectories and extensive energy evaluations.

Neural amortized inference. Neural amortized inference methods aim to bypass costly MCMC by
training neural samplers that generate approximate samples in one or a few forward passes. Diffusion-
based neural samplers learn stochastic differential equations parameterized by neural networks to map
simple priors to complex targets [45, 41], and GFlowNets train stochastic policies whose marginal
visitation probabilities match an unnormalized density [3, 13]. Boltzmann Generators (BG) is another
line of works to amortize inference, such as molecular dynamics simulation. BG utilizes normalizing
flows trained on simulated data to sample from the Boltzmann distribution and estimate density,
enabling statistical reweighting for unbiased estimates [33, 14, 29, 22, 39].

Diffusion-based neural samplers. Diffusion-based samplers aim to sample from unnormalized
target distributions in data-free settings. Several approaches [45, 41, 42, 2, 5] formulate the sampling
objective via KL divergence in path measure space. Akhound-Sadegh et al. [1] further introduces
off-policy training via replay buffers. Recent works [8, 11] also explore controllable dynamics,
offering improved exploration in complex energy landscapes. While these methods often improve
mode coverage by learning reverse-time dynamics, they remain computationally intensive, hindering
scalability in high-dimensional settings.

Generative Flow Networks. GFlowNets was originally introduced by Bengio et al. [3] and Bengio
et al. [4] on discrete spaces where the probability of each outcome is proportional to a given reward sig-
nal. Subsequent extensions have connected GFlowNets to continuous space [23], enabling sampling
from unnormalized densities in high-dimensional spaces [13, 28]. Recent work has also explored
enhancements to off-policy training strategies [38] and incorporated local search mechanisms [20], al-
lowing GFlowNets to more effectively navigate continuous energy landscapes. Additionally, adaptive
reward design has emerged as a promising direction for improving mode coverage during training [21],
especially in tasks that require structured exploration or sparse supervision.
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Table 1: ELBO, EUBO, their gap, and energy calls across high-dimensional Manywell distributions.
We use MALA as the local search algorithm. We consume 6M energy calls per searcher (12M total
for 2 rounds) and 8M energy calls for the learner. Bold indicates the best performance per metric,
and * indicates large absolute values of metrics.

Manywell (𝑑 = 64) Manywell (𝑑 = 128)

Method ELBO ↑ EUBO ↓ EUBO − ELBO ↓ Energy calls ELBO ↑ EUBO ↓ EUBO − ELBO ↓ Energy calls

PIS+LP 300.57 ± 0.37 347.48 ± 0.26 46.91 ± 0.55 130M 601.01 ± 0.94 697.32 ± 0.49 96.31 ± 0.71 130M
TB+LP 306.47 ± 0.23 351.98 ± 0.46 45.52 ± 0.51 180M 612.45 ± 0.65 706.73 ± 2.59 94.28 ± 3.00 300M
FL-SubTB+LP 306.14 ± 0.71 352.22 ± 0.62 46.08 ± 0.26 330M 609.85 ± 0.48 709.96 ± 2.10 99.61 ± 1.83 330M
TB+LS+LP 312.66 ± 2.66 339.34 ± 1.02 26.68 ± 3.37 320M 592.52 ± 2.25 693.65 ± 1.40 101.81 ± 3.62 320M
TB+Expl+LP 306.54 ± 0.23 351.91 ± 0.53 45.37 ± 0.66 180M 611.98 ± 0.34 705.35 ± 1.05 93.37 ± 1.22 240M
TB+Expl+LS+LP 300.10 ± 1.05 344.85 ± 0.41 44.75 ± 1.39 320M 591.47 ± 0.36 694.93 ± 0.54 103.45 ± 0.88 320M

PIS 321.87 ± 0.05 2026.11 ± 408.98 1704.91 ± 408.49 100M 643.30 ± 0.09 1159.60 ± 48.53 516.30 ± 49.67 100M
TB 317.35 ± 6.01 853.94 ± 43.35 544.36 ± 29.85 100M 637.01 ± 2.14 1423.35 ± 292.15 786.35 ± 290.46 100M
TB+LS 314.94 ± 4.60 357.40 ± 4.36 42.91 ± 9.15 290M 573.13 ± 73.49 738.07 ± 10.77 164.95 ± 62.71 290M
TB+Expl+LS 265.99 ± 95.39 361.00 ± 16.58 41.46 ± 15.47 290M 589.49 ± 7.25 698.24 ± 2.81 108.74 ± 10.07 290M
GAFN 320.88 ± 0.36 573.68 ± 29.02 252.80 ± 30.87 100M ∗ ∗ ∗ 100M
AT + LP 281.56 ± 2.21 353.64 ± 3.48 72.48 ± 2.97 370M 462.61 ± 6.67 739.93 ± 4.97 277.32 ± 2.46 370M
iDEM 268.99 ± 1.22 414.18 ± 1.06 145.20 ± 1.60 300M 494.28 ± 2.94 817.32 ± 3.22 323.04 ± 5.69 300M

SGDS 320.25 ± 0.13 336.51 ± 0.11 16.26 ± 0.22 20M 614.41 ± 3.44 684.76 ± 1.30 70.35 ± 4.31 20M
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Figure 1: Mode coverage comparison using 2D projections of 10,000 samples on Manywell-128.

Connection to previous works. Using gradient-guided MCMC for improving exploration in off-
policy diffusion samplers is not new. Lemos et al. [25] employed gradient-guided MCMC to populate
replay buffers for GFlowNet diffusion sampler training. Sendera et al. [38] applied parallel MALA
initialized from diffusion sampler states, similar to discrete local search GFlowNet methods [20]. Our
approach extends the multiple-round algorithm of Lemos et al. [25], incorporating RL techniques to
boost efficiency. It can be viewed as a deeper but shorter-cycle alternative to Sendera et al. [38], whose
frequent diffusion-based re-initializations overly depend on sampler performance (see comparison
with TB + LS at Table 1, Table 2, and Figure 4a).

Leveraging Learner uncertainty to guide exploration aligns with active learning and related GFlowNet
approaches [35, 21]. Following generative augmented flow network (GAFN) [35], direct injection of
intrinsic reward was effective, similar to our idea (see comparison with GAFN at Table 1). While
Kim et al. [21] introduced additional neural samplers called adaptive teachers (AT) as Searchers to
covers high loss region it is highly unstable in large scale due to Searcher’s adversarial behavior with
non-stationary objective, where our method efficiently employs MCMC-based exploration without
additional neural network (see comparison with AT + LP at Table 1).

5 Experiments

In this section,1 our primary goal is to demonstrate the performance and efficiency of our proposed
framework through several experiments. Specifically, we aim to showcase the sample efficiency and
scalability of our method, as well as validate the effectiveness of the various training strategies we
introduced. We focus on presenting results on high-dimensional tasks. In all the experiments, we use
four different random seeds and average the results of each run. We provide the full experimental
details and additional results in Appendix A.

5.1 Main results

Settings. In this work, we compare the performance of our proposed framework against baselines
on multiple benchmark tasks, including 40GMM, Manywell-32/64/128, LJ-13, and LJ-55. We

1Source code: https://anonymous.4open.science/r/SGDS-D38C
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Method ELBO ↑ EUBO ↓
AIS+MLE 244.85 ± 10.34 840.45 ± 11.59
Fine-tuning 554.17 ± 107.70 707.07 ± 8.49
Re-init w/o log 𝑍 583.65 ± 16.69 691.37 ± 1.40
w/o RND-searcher 608.01 ± 4.18 686.63 ± 1.32
SGDS 614.41 ± 3.44 684.76 ± 1.30

(c) Ablation results on Manywell-128

Figure 2: Trade-off between EUBO–ELBO gap and energy calls in Manywell-128 (left) and LJ-55
(middle). The results of ablation study on Manywell-128 (right) show the performance of AIS
using the same total energy calls with MLE amortizing, taking 2 rounds with fine-tuning instead of
re-initialization, and using the Searcher with no RND rewards. All methods use 20M energy calls.

Table 2: ELBO, �EUBO, their gap, and energy calls across Lennard-Jones potential. We denote�EUBO as the EUBO metrics calculated by the reference samples provided by [1], which are not
exact samples from the target distribution. Bold indicates the best performance, and * indicates large
absolute values of metrics.

LJ-13 (𝑑 = 39) LJ-55 (𝑑 = 165)

Method ELBO ↑ �EUBO ↓ �EUBO - ELBO ↓ Energy calls ELBO ↑ �EUBO ↓ �EUBO - ELBO ↓ Energy calls

PIS 57.73 ± 0.22 59.77 ± 0.23 2.04 ± 0.32 370K 357.19 ± 3.67 410.15 ± 4.90 45.53 ± 5.58 45K
TB 54.73 ± 3.02 67.26 ± 1.63 12.53 ± 3.43 370K ∗ ∗ ∗ 45K
TB+Expl+LS 52.82 ± 0.30 64.81 ± 0.42 11.99 ± 0.52 3M ∗ 563.81 ± 23.26 ∗ 1M
iDEM 27.88 ± 5.92 140.25 ± 4.81 112.37 ± 7.63 300M ∗ ∗ ∗ 120M

SGDS 57.68 ± 0.19 59.21 ± 0.16 1.53 ± 0.25 370K 363.22 ± 0.87 396.23 ± 0.33 33.01 ± 0.93 45K

evaluate methods using three metrics: the Evidence Lower Bound (ELBO), Evidence Upper Bound
(EUBO) [7], and the EUBO−ELBO gap. A smaller gap between ELBO and EUBO indicates a more
accurate approximation of the target distribution.

For fair comparison on the number of energy calls, we train the methods until convergence of ELBO
and EUBO. To determine convergence, we evaluate based on the moving average of the metrics over
the 10 consecutive evaluations, where we evaluate the model every 100 training steps. If a method
does not converge within the maximum number of epochs, we report the metrics at the final step.

Baselines. The baselines are primarily selected based on their strong performance demonstrated
in the prior work [38], as well as their methodological relevance [35, 21] or having a different
framework [1]. Specifically, iDEM [1] utilizes trajectories of length 𝑇 = 1, 000 for SDE integration,
whereas other baselines, including PIS [45], TB [27], AT [21], and GAFN [35], employ shorter
diffusion trajectories (𝑇 = 100) with distinct optimization objectives. We further evaluate enhanced
variants of these methods incorporating LP, such as PIS+LP, TB+LP, and FL-SubTB+LP, along with
exploration-enhanced (+Expl) or local search (+LS) variants introduced by Sendera et al. [38].

For the LJ potentials, we omit LP-based methods due to their poor convergence despite using addi-
tional information. We also note that our comparison with iDEM is based on our reimplementation,
where we modified the hyperparameters to improve sample efficiency (see the details in Appendix A).

Results. As shown in Table 1 and Table 2, our proposed framework consistently achieves superior
performance across all high-dimensional tasks (Manywell-64, Manywell-128, and LJ-55). Especially,
our method demonstrates the best trade-off between performance and energy efficiency, using a small
number of energy calls.

In Figure 1, one can observe that our method better captures the modes in Manywell-128 when
compared to the baselines. As illustrated in Figure 2a and Figure 2b, even increasing the energy
budget of baselines does not allow them to surpass the performance of our proposed approach. Also,
as shown in Figure 3, our framework generates high quality samples with low energy. Furthermore,
for the LJ-55 potential, the distribution of interatomic distances is similar to the ground truth
distribution. Additionally, our method obtains competitive results with significantly fewer samples in
lower-dimensional tasks such as 40GMM, Manywell-32 (see Appendix B), and LJ-13 (see Table 2).
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Figure 3: Histograms for LJ-13/55 energy densities and LJ-55 interatomic distances.

5.2 Ablation study

MCMC sampler with the same budget. In our method, we consume energy calls during both
Searcher sampling and Learner training. To evaluate the efficiency of the Learner’s on/off-policy
mixing training scheme, we conduct a controlled comparison where the total energy call budget (20M)
is entirely allocated to AIS on Manywell-128. We run 200 chains on the trajectories with 𝑇 = 10, 000
for AIS. As a result, even though high-reward samples were collected using AIS with much longer
trajectories, the MLE Learner failed to perform amortized learning as shown in Figure 2c.

Periodic re-initialization and pre-trained flow. We perform an ablation study to evaluate two design
components of our method when proceeding to the next training round: (1) re-initializing the Learner
model, and (2) retaining the pre-trained log 𝑍 parameter from the previous round. Specifically, to
assess the benefit of re-initialization in mitigating primacy bias, we compare our method against a
fine-tuning baseline where the second-round Learner continues training from the first-round model
weights without re-initialization. To isolate the effect of retaining the estimated log 𝑍 value, we
compare against a variant where the log 𝑍 parameter is also re-initialized at the start of the second
round. As shown in Figure 2c, our full method outperforms both ablation variants, confirming that
re-initialization is beneficial for mitigating primacy bias, and that employing the log 𝑍 parameter
across rounds leads to better training stability and performance.

Novelty-based reward in Searcher sampling. We assess the effectiveness of incorporating the
novelty-based intrinsic reward derived by RND [10] into the Searcher sampling process in later
training rounds. In our framework, starting from the second round, the Searcher sampler drives prior
samples in the direction of the target distribution and exploration signal derived from a previously
trained RND module, which prioritizes underexplored modes by the Learner sampler. These dynamics
guide the Searcher to focus sampling efforts on modes that remain novel and close to the target
distribution across rounds. As shown in Figure 2c, at the end of round 2, our RND-augmented
approach yields a smaller EUBO–ELBO gap compared to a way of repeating the same Searcher
sampling without exploration. These results demonstrate that using intrinsic rewards to adaptively
bias Searcher sampling toward novel modes improves overall distributional coverage across rounds.

5.3 Application to molecular conformer generation.

We also consider a real-world system, Alanine Dipeptide (ALDP), consisting of 22 atoms in vacuum
at a temperature of 300K. While some previous works show promising results in sampling its
conformation, they rely on low-dimensional descriptors such as rotatable torsion angles [43]. Solving
ALDP at all-atom resolutions remains a challenge for existing diffusion-based neural samplers.

Settings. To accurately evaluate molecular energies, we employ TorchANI [16], a PyTorch imple-
mentation of ANI deep learning potentials trained on quantum-mechanical reference data. For the
Searcher, we run four parallel 55ps Langevin dynamics simulations under the TorchANI potential. In
the first round, simulations are performed at 600 K to efficiently sample slow degrees of freedom;
in the second round, we use 300 K to capture faster motions and collect high-reward samples. The
Learner and RND models use the 𝐸 (3)-equivariant graph neural network (EGNN) architecture [37]
based on atomic coordinates. We provide details in Appendix A.

Baselines. To establish a baseline, we generated a reference-state ensemble via a 100 ns Langevin-
dynamics simulation at 300 K. We evaluated three methods: PIS, TB, and a local-search variant of
TB that employs the same Langevin dynamics as the Searcher. We compared SGDS to maximum-
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Figure 4: Qualitative results of methods in Alanine Dipeptide. (a) Ramachandran plot consisting of
two backbone torsion angles (𝜙, 𝜓) and (b) 3D visualization of generated conformations, respectively.

likelihood estimation (MLE) of forward path distribution, training MLE on 2.5 times more samples,
generated by the same Searcher without RND, using 10 parallel simulations to match the total number
of energy evaluations. We omit the LP methods since they have large absolute values of EUBO
and ELBO. We exclude comparison with Volokhova et al. [43], as they consider only rotatable
torsion angles, and with Midgley et al. [29], which employs a discrete normalizing flow on internal
coordinates, whereas our method utilizes a diffusion model in atomic coordinate space.

Table 3: Comparison of ELBO, EUBO, and energy
calls on Alanine Dipeptide (ALDP). Bold indicates
the best performance, and * indicates large abso-
lute values of metrics.

Method (Energy calls) ELBO [×103] ↑ EUBO [×103] ↓

PIS (1M) 516.912 ± 5.357 601.565 ± 87.771
TB (1M) ∗ ∗
TB+Expl+LS (3M) 519.614 ± 0.015 538.479 ± 0.198
MLE (1M) 520.618 ± 0.142 538.032 ± 0.000
SGDS (1M) 520.916 ± 0.165 538.025 ± 0.003

Results. In Table 3, our method outperforms
diffusion-based neural samplers and MLE. As il-
lustrated in Figure 4, both our method and MLE
capture the free energy landscape and generate
physically plausible conformations by leverag-
ing high-fidelity samples from the Langevin dy-
namics Searcher. By contrast, diffusion-based
neural samplers (PIS, TB, and TB+Expl+LS)
fail to reconstruct the target free-energy surface
or to produce realistic structures, since their for-
ward policies insufficiently explore the complex
landscape. We note that the Langevin dynamics
used in the Searcher yields higher-quality samples than those obtained by local searches from forward-
policy outputs. Furthermore, our approach refines the biased samples from the high-temperature
Searcher through an unbiased TB objective, improving ELBO and EUBO scores compared to MLE.

6 Conclusion

We have proposed a scalable and sample-efficient sampling framework SGDS that integrates an
MCMC Searcher with a diffusion Learner. By leveraging high-quality samples from replay buffers
and training the Learner model via on/off-policy TB objectives, our method effectively bridges
classical sampling with neural amortization. The inclusion of novelty-based intrinsic rewards by
RND further enhances the exploration of the Searcher, enabling informed guidance to underexplored
modes throughout multiple rounds.

Our work opened promising directions for integrating learning-based amortization with classical
sampling, particularly for tasks where both diversity and precision are crucial. Future extensions
include designing multi-agent search systems that leverage classical sampling methods for coopera-
tive strategic exploration in high-dimensional spaces and developing advanced off-policy learning
schemes, such as adaptive filtering strategies for the replay buffer.

9



Acknowledgements

This work was partly supported by Institute for Information & communications Technology Planning
& Evaluation(IITP) grant funded by the Korea government(MSIT) (RS-2019-II190075, Artificial In-
telligence Graduate School Support Program(KAIST)), National Research Foundation of Korea(NRF)
grant funded by the Ministry of Science and ICT(MSIT) (No. RS-2022-NR072184), GRDC(Global
Research Development Center) Cooperative Hub Program through the National Research Foundation
of Korea(NRF) grant funded by the Ministry of Science and ICT(MSIT) (No. RS-2024-00436165),
and the Institute of Information & Communications Technology Planning & Evaluation(IITP) grant
funded by the Korea government(MSIT) (RS-2025-02304967, AI Star Fellowship(KAIST)).
Minsu Kim was supported by KAIST Jang Yeong Sil Fellowship.

References
[1] Tara Akhound-Sadegh, Jarrid Rector-Brooks, Joey Bose, Sarthak Mittal, Pablo Lemos, Cheng-

Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, et al. Iterated
denoising energy matching for sampling from boltzmann densities. In International Conference
on Machine Learning (ICML), 2024.

[2] Michael S Albergo and Eric Vanden-Eijnden. Nets: A non-equilibrium transport sampler. arXiv
preprint arXiv:2410.02711, 2024.

[3] Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio.
Flow network based generative models for non-iterative diverse candidate generation. Neural
Information Processing Systems (NeurIPS), 2021.

[4] Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
GFlowNet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

[5] Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-
based generative modeling. Transactions on Machine Learning Research (TMLR), 2024. ISSN
2835-8856.

[6] Julius Berner, Lorenz Richter, Marcin Sendera, Jarrid Rector-Brooks, and Nikolay Malkin.
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences
and faster training. arXiv preprint arXiv:2501.06148, 2025.

[7] Denis Blessing, Xiaogang Jia, Johannes Esslinger, Francisco Vargas, and Gerhard Neumann.
Beyond ELBOs: A large-scale evaluation of variational methods for sampling. In International
Conference on Machine Learning (ICML), 2024.

[8] Denis Blessing, Julius Berner, Lorenz Richter, and Gerhard Neumann. Underdamped diffusion
bridges with applications to sampling. In International Conference on Learning Representations
(ICLR), 2025.

[9] Ignasi Buch, Toni Giorgino, and Gianni De Fabritiis. Complete reconstruction of an enzyme-
inhibitor binding process by molecular dynamics simulations. Proceedings of the National
Academy of Sciences, 108(25):10184–10189, 2011.

[10] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. In International Conference on Learning Representations (ICLR), 2019.

[11] Junhua Chen, Lorenz Richter, Julius Berner, Denis Blessing, Gerhard Neumann, and Anima
Anandkumar. Sequential controlled langevin diffusions. International Conference on Learning
Representations (ICLR), 2025.

[12] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 68(3):411–436, 2006.

[13] Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Ste-
fan Bauer, and Yoshua Bengio. Bayesian structure learning with generative flow networks.
Conference on Uncertainty in Artificial Intelligence (UAI), 2022.

10



[14] Manuel Dibak, Leon Klein, Andreas Krämer, and Frank Noé. Temperature steerable flows and
boltzmann generators. Physical Review Research, 4(4):L042005, 2022.

[15] Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid Monte Carlo.
Physics Letters B, 195(2):216–222, 1987.

[16] Xiang Gao, Farhad Ramezanghorbani, Olexandr Isayev, Justin S Smith, and Adrian E Roitberg.
Torchani: a free and open source pytorch-based deep learning implementation of the ani neural
network potentials. Journal of chemical information and modeling, 60(7):3408–3415, 2020.

[17] Jiajun He, Yuanqi Du, Francisco Vargas, Dinghuai Zhang, Shreyas Padhy, RuiKang OuYang,
Carla Gomes, and José Miguel Hernández-Lobato. No trick, no treat: Pursuits and challenges
towards simulation-free training of neural samplers. arXiv preprint arXiv:2502.06685, 2025.

[18] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

[19] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3d. In International Conference on Machine Learning
(ICML), 2022.

[20] Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo
Ahn, and Jinkyoo Park. Local search GFlowNets. International Conference on Learning
Representations (ICLR), 2024.

[21] Minsu Kim, Sanghyeok Choi, Taeyoung Yun, Emmanuel Bengio, Leo Feng, Jarrid Rector-
Brooks, Sungsoo Ahn, Jinkyoo Park, Nikolay Malkin, and Yoshua Bengio. Adaptive teachers
for amortized samplers. In International Conference on Learning Representations (ICLR),
2025.

[22] Leon Klein and Frank Noé. Transferable boltzmann generators. Neural Information Processing
Systems (NeurIPS), 2024.

[23] Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcıa, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of
continuous generative flow networks. International Conference on Machine Learning (ICML),
2023.

[24] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on
energy-based learning. Predicting structured data, 1(0), 2006.

[25] Pablo Lemos, Nikolay Malkin, Will Handley, Yoshua Bengio, Yashar Hezaveh, and Laurence
Perreault-Levasseur. Improving gradient-guided nested sampling for posterior inference. In
International Conference on Machine Learning (ICML), 2024.

[26] Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain,
Andrei Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning GFlowNets from
partial episodes for improved convergence and stability. International Conference on Machine
Learning (ICML), 2022.

[27] Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory
balance: Improved credit assignment in gflownets. Neural Information Processing Systems
(NeurIPS), 2022.

[28] Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai
Zhang, and Yoshua Bengio. GFlowNets and variational inference. International Conference on
Learning Representations (ICLR), 2023.

[29] Laurence Illing Midgley, Vincent Stimper, Gregor N. C. Simm, Bernhard Schölkopf, and
José Miguel Hernández-Lobato. Flow annealed importance sampling bootstrap. In International
Conference on Learning Representations (ICLR), 2023.

[30] Radford M Neal. Annealed importance sampling. Statistics and computing, 11:125–139, 2001.

11



[31] Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville.
The primacy bias in deep reinforcement learning. In International Conference on Machine
Learning (ICML), 2022.

[32] Frank Noé, Christof Schütte, Eric Vanden-Eijnden, Lothar Reich, and Thomas R Weikl. Con-
structing the equilibrium ensemble of folding pathways from short off-equilibrium simulations.
Proceedings of the National Academy of Sciences, 106(45):19011–19016, 2009.

[33] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling
equilibrium states of many-body systems with deep learning. Science, 365(6457):eaaw1147,
2019.

[34] Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of GFlowNets
with local credit and incomplete trajectories. International Conference on Machine Learning
(ICML), 2023.

[35] Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio. Generative
augmented flow networks. In International Conference on Learning Representations (ICLR),
2023.

[36] Peter J Rossky, Jimmie D Doll, and Harold L Friedman. Brownian dynamics as smart monte
carlo simulation. The Journal of Chemical Physics, 69(10):4628–4633, 1978.

[37] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural
networks. In International Conference on Machine Learning (ICML), pages 9323–9332. PMLR,
2021.

[38] Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks,
Alexandre Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy training of diffusion
samplers. Neural Information Processing Systems (NeurIPS), 2024.

[39] Charlie B. Tan, Joey Bose, Chen Lin, Leon Klein, Michael M. Bronstein, and Alexander
Tong. Scalable equilibrium sampling with sequential boltzmann generators. In Frontiers in
Probabilistic Inference: Learning meets Sampling, 2025.

[40] Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimiza-
tion in the latent space of deep generative models via weighted retraining. Neural Information
Processing Systems (NeurIPS), 2020.

[41] Francisco Vargas, Will Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. Interna-
tional Conference on Learning Representations (ICLR), 2023.

[42] Francisco Vargas, Shreyas Padhy, Denis Blessing, and Nikolas Nüsken. Transport meets
variational inference: Controlled Monte Carlo diffusions. International Conference on Learning
Representations (ICLR), 2024.

[43] Alexandra Volokhova, Michał Koziarski, Alex Hernández-García, Cheng-Hao Liu, Santiago
Miret, Pablo Lemos, Luca Thiede, Zichao Yan, Alán Aspuru-Guzik, and Yoshua Bengio.
Towards equilibrium molecular conformation generation with gflownets. Digital Discovery, 3
(5):1038–1047, 2024.

[44] Dinghuai Zhang, Ricky Tian Qi Chen, Cheng-Hao Liu, Aaron Courville, and Yoshua Bengio.
Diffusion generative flow samplers: Improving learning signals through partial trajectory
optimization. International Conference on Learning Representations (ICLR), 2024.

[45] Qinsheng Zhang and Yongxin Chen. Path integral sampler: a stochastic control approach for
sampling. International Conference on Learning Representations (ICLR), 2022.

12



A Experiment details

Code is available at https://github.com/minkyu1022/SGDS.

And the reference samples can be downloaded from https://zenodo.org/records/15436773.

A.1 MCMC samplers for Searcher

Annealed importance sampling (AIS). Annealed importance sampling (AIS) [30] is an MCMC
sampling method for estimating the partition functions of target distributions. AIS bridges between
an easy-to-sample initial distribution 𝜋0 (𝑥) and a target distribution 𝜋𝑇 (𝑥) through a sequence of
intermediate distributions {𝜋𝑡 (𝑥)}𝑇𝑡=0, where 𝑇 is the length of a trajectory or chain. Each intermediate
distribution 𝜋𝑡 (𝑥) typically has the form:

𝜋𝑡 (𝑥) ∝ 𝜋0 (𝑥)1−𝛽𝑡 𝜋𝑇 (𝑥)𝛽𝑡 , 0 = 𝛽0 < 𝛽1 < · · · < 𝛽𝑇 = 1, (10)

where {𝛽𝑡 } is a predefined annealing schedule, and we use 𝛽𝑡 = 𝑡
𝑇

in our framework. AIS generates
samples through an MCMC transition kernel at each intermediate distribution with the following
SDE simulation:

d𝑥𝑡 = ∇ log 𝜋𝑡 (𝑥𝑡 )d𝑡 +
√

2d𝑊𝑡 , (11)

where ∇ log 𝜋𝑡 (𝑥𝑡 ) = (1 − 𝛽𝑡 )∇ log 𝜋0 (𝑥𝑡 ) + 𝛽𝑡∇ log 𝜋𝑇 (𝑥𝑡 ) is the score function of the annealed
distribution (unnormalized). Then it accumulates importance weights given by:

𝑤AIS =

𝑇∏
𝑡=1

𝜋𝑡 (𝑥𝑡−1)
𝜋𝑡−1 (𝑥𝑡−1)

, (12)

and the expectation of these weights provides an unbiased estimator of the partition function ratio
between 𝜋𝑇 (𝑥) and 𝜋0 (𝑥):

𝑍𝑇

𝑍0
≈ 1
𝑁

𝑁∑︁
𝑖=1

𝑤 (𝑖) , (13)

where 𝑤 (𝑖) is the importance weight computed for the 𝑖-th AIS trajectory, and 𝑁 is the total number
of trajectories. We compute the unbiased estimation of the log scale of the partition function for
Manywell experiments by

log �̂�𝑇 = log
1
𝑁

𝑁∑︁
𝑖=1

𝑤 (𝑖) , (14)

where log 𝑍0 = 0 because the initial distribution is Gaussian in our framework.

Metropolis-Adjusted Langevin Algorithm (MALA). The Metropolis-Adjusted Langevin Algorithm
(MALA) [36] is an MCMC method that uses the gradient of the energy function to generate samples
from a target distribution 𝜋(𝑥). MALA starts by sampling initial states 𝑥0 ∼ 𝜋0 (𝑥0), where 𝜋0 (·) is
some proposed initial distribution (in most cases, N(0, 𝜎2𝐼)). It then iteratively proceeds transition
from 𝑥𝑡 to 𝑥𝑡+1 by simulating the following Langevin dynamics:

d𝑥𝑡 = −∇E(𝑥𝑡 )d𝑡 +
√

2d𝑊𝑡 , (15)

Here, 𝑥𝑡 is the current state at time 𝑡, 𝑊𝑡 denotes the standard Brownian motion, and E(𝑥) is the
energy function of target distribution 𝜋(𝑥), i.e. −∇E(𝑥𝑡 ) = ∇ log 𝜋(𝑥𝑡 ).
The proposed sample 𝑥𝑡+1 is then accepted or rejected according to the Metropolis-Hastings accep-
tance probability:

𝛼 = min
{
1,
𝜋(𝑥𝑡+1)𝑞(𝑥𝑡 | 𝑥𝑡+1)
𝜋(𝑥𝑡 )𝑞(𝑥𝑡+1 | 𝑥𝑡 )

}
, (16)
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where 𝑞(· | ·) denotes the Gaussian transition density induced by the Langevin proposal:

𝑥𝑡+1 = 𝑥𝑡 − ∇E(𝑥𝑡 )Δ𝑡 +
√

2Δ𝑡 · 𝑧, 𝑧 ∼ N(0, 𝐼). (17)

The step size Δ𝑡 is a key factor influencing the quality of sampling. For all tasks, we utilize the
scheduling of step size, by comparison between the current acceptance rate and the target acceptance
rate (57.4%). We use MALA as Searcher on 40GMM, LJ-13, and LJ-55.

Also, since a MALA trajectory forms a Markov chain, consecutive samples are still correlated and
therefore {𝑥𝑖}𝑁𝑖=1 are not strictly i.i.d. To reduce the most severe correlations we discard the first
𝑀burn-in iterations as burn-in and use all subsequent states directly. We then compute a rough estimate

log �̂� = log
[ 1
𝑁

𝑁∑︁
𝑖=1

exp (−E(𝑥𝑖))
]
, (18)

where this estimator is biased since 𝑥𝑖∼𝜋 ideally and E𝜋 [exp (−E(𝑥))] = 𝑍
∫
𝜋2 (𝑥)𝑑𝑥 < 𝑍 . Despite

the bias, the estimation can provide a numerically reasonable heuristic value for the initialization of
the Learner’s log 𝑍𝜃 .

Underdamped Langevin dynamics. For MCMC Searchers of a real-world molecule, Alanine
Dipeptide, we adopt underdamped Langevin dynamics as our molecular dynamics (MD). This
framework combines deterministic forces with stochastic fluctuations, which is essential for accurately
capturing thermal motion and inertial effects of the molecules. The resulting dynamics are governed
by the following system of stochastic differential equations:

d𝑥𝑡 = 𝑣𝑡 d𝑡,

d𝑣𝑡 = −𝑀−1∇E(𝑥𝑡 ) d𝑡 − 𝛾𝑣𝑡 d𝑡 +
√︃

2𝛾𝑘𝐵𝑇 𝑀−1 d𝑊𝑡 .
(19)

Here, 𝑥𝑡 is the position at time 𝑡, 𝑣𝑡 is the velocity, 𝑀 is the mass matrix (symmetric positive definite),
E(𝑥) is the potential energy function, and ∇E(𝑥𝑡 ) is its gradient with respect to position, i.e., the
negative force. The parameter 𝛾 is the friction coefficient, 𝑘𝐵 is the Boltzmann constant, 𝑇 is the
absolute temperature, and𝑊𝑡 denotes standard Brownian motion.

For ALDP, we use underdamped Langevin dynamics as MD with high temperature(600K). We use
Euler-Maruyama integration to discretize the Langevin dynamics. As in MALA, we compute log �̂�
for the initialization of log 𝑍𝜃 in Learner, using Equation (18).

A.2 Metrics

In this subsection, we formally define the evaluation metrics used to assess the Learner’s quality.
All metrics are derived from the same importance-weight formulation based on the target partition
function.

We begin with the exact log partition function log 𝑍 , which can be written using forward-path
importance sampling. Let 𝜏 = (𝑥0, 𝑥Δ𝑡 , . . . , 𝑥1) denote a sample trajectory drawn from the forward
policy 𝑃𝐹 (𝜏), and let 𝑅(𝑥1) be the reward associated with the final state 𝑥1. Then, the partition
function can be expressed as

log 𝑍 = logE𝜏∼𝑃𝐹 (𝜏 )

(
𝑅(𝑥1)𝑃𝐵 (𝜏 | 𝑥1)

𝑃𝐹 (𝜏)

)
, (20)

where 𝑃𝐵 (𝜏 | 𝑥1) is the backward policy conditioned on the final state.

Since directly optimizing this quantity is intractable, we use two surrogate bounds. The first is the
evidence lower Bound (ELBO), defined as

ELBO = E𝜏∼𝑃𝐹 (𝜏 )

[
log

𝑅(𝑥1)𝑃𝐵 (𝜏 | 𝑥1)
𝑃𝐹 (𝜏)

]
. (21)

By Jensen’s inequality, ELBO is always a lower bound on the true log 𝑍 . It is commonly used as
a training objective and can reflect how well the forward policy 𝑃𝐹 concentrates on high-reward
trajectories. However, ELBO can be misleading in practice. A high ELBO does not necessarily imply
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that all important modes are captured, as the forward policy may collapse to a small subset of modes
while still achieving high reward [7].

To address this limitation, we also evaluate the evidence upper Bound (EUBO), which flips the
sampling distribution:

EUBO = E𝜏∼𝑃𝐵 (𝜏 )

[
log

𝑅(𝑥1)𝑃𝐵 (𝜏 | 𝑥1)
𝑃𝐹 (𝜏)

]
. (22)

Unlike ELBO, EUBO acts as a diagnostic metric. It is an upper bound of log 𝑍 and penalizes missing
probability mass. EUBO is driven to penalize missing probability mass and therefore exposes mode-
collapse that ELBO may hide [7]. And then, true log 𝑍 is consequently bounded by two bounds, i.e.,
ELBO ≤ log 𝑍 ≤ EUBO.

A smaller gap between the two bounds yields a tighter estimate of log 𝑍 , making this gap a useful
indicator of the Learner’s sampling quality.

Table 4: Searcher configurations of SGDS
Benchmark 40GMM Manywell 32 Manywell 64 Manywell 128 LJ-13 LJ-55 ALDP

Type MALA AIS AIS AIS MALA MALA MD
# of Chains 300 60K 60K 60K 16 1 4
Chain length 4K 100 100 100 4K 10K 110K
Burn-in 2K - - - 2K 4K 10K
init. step size 1e-3 1e-3 1e-3 1e-3 1e-5 1e-5 0.5fs

Table 5: Learner configurations of SGDS
Benchmark 40GMM Manywell 32 Manywell 64 Manywell 128 LJ-13 LJ-55 ALDP

Brownian bridge std (𝜎) 10.0 1.0 1.0 1.0 0.2 0.2 0.2
Buffer size 600k 60k 60k 60k 50K 10K 800K
Batch size 300 300 300 300 32 4 16
Architecture MLP MLP MLP MLP EGNN EGNN EGNN
hidden dim 256 256 256 256 64 64 128
# of layers 2 2 2 2 5 5 5
RND weight 100 100 100 100 10 1 10

A.3 Experimental setup

For the diffusion-based neural samplers, we follow the setup of [38].

Gaussian mixture model with 40 modes (40GMM). Training proceeds in one or two rounds. Our
framework achieves competitive performance against baselines even with only a single round, and
shows marginal improvement with a second round. We use MALA as the Searcher, running 300
parallel chains of length 4K, discarding the first 2K steps as burn-in. We maintain a target acceptance
rate of 57.4% through step size scheduling, resulting in a total of 2.4M energy evaluations. We use
the Gaussian prior with a standard deviation of 21.0 for MALA.

All methods adopt the PIS architecture [45, 38], with a joint network consisting of a two-layer MLP
with 256 hidden dimensions. The RND network consists of three layers in the predictor network
and the target network, with 256 hidden dimensions. We adopt Brownian bridges as the backward
process, with a Brownian motion coefficient of 10.0. We run 25K epochs in both the first round and
the second round.

Manywell distributions. We proceed with one or two rounds for training on Manywell distributions.
We use AIS as the Searcher, running 60K parallel chains (3K chains * 20 iterations) of length 100,
only taking the final step samples. We use the Gaussian prior with a standard deviation of 1.0.

All methods adopt the PIS architecture [45, 38], with a joint network consisting of a two-layer MLP
with 256 hidden dimensions. The RND network consists of three layers in the predictor network
and the target network, with 256 hidden dimensions. We adopt Brownian bridges as the backward
process, with a Brownian motion coefficient of 1.0. We run 25K epochs in the first round and 30K in
the second round.
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Lennard-Jones (LJ) potentials. Training proceeds in two rounds. We use MALA as the Searcher for
two rounds: in LJ-13 we run 16 parallel chains of length 4K corresponding to 64K energy evaluations,
discarding the first 2K steps as burn-in and retaining 57.4% accepted samples among remaining 32K
samples; in LJ-55 we run a single chain of length 10K corresponding to 10K energy evaluations,
discarding the first 4K steps and retaining 57.4% accepted samples among remaining 6K samples.
We use the Gaussian prior with a standard deviation of 1.75 for MALA.

All methods utilize five EGNN layers with 64 hidden dimensions. Following [19, 22], we design
an E(3)-equivariant generative model initialized from a Dirac delta at the origin, using a mean-free
forward transition kernel in inference. The RND network comprises three layers in the predictor
network and two in the target network. We adopt Brownian bridges as the backward process for
diffusion-based neural samplers, with a Brownian motion coefficient of 0.2. For LJ-13, we run 5K
epochs in the first round and 10K in the second round; for LJ-55, 10K and then 20K epochs.

Specifically, we note that the reported performance of the iDEM on Table 2 differs from the original
paper [1] due to adjustments, except 𝜎max and 𝜎min of the noise scheduling, made to avoid significant
discrepancies in energy call usage compared to our method. We reduce the EGNN hidden dimension
to 64 and the batch size to 8, and limit the total number of training epochs, including both inner and
outer loops, to 15K accordingly. And while the latest iDEM codebase employs 10 steps of Langevin
dynamics refinement before evaluation, particularly for LJ-55, we omit this step for fair comparison
and instead set the number of samples for MC estimation to 1K. While iDEM reports a lower bound
of log 𝑍 computed via importance sampling with its learned proposal density 𝑞(𝑥) given by OT-CFM
model, we omit this result in our tables. We compute the lower bound based on trajectory-level
estimators without training auxiliary models, i.e., CFM. Thus, our reported values are not directly
comparable to those from iDEM.

Additionally, in LJ-55, we maximize the log-likelihood of the forward path distribution under the
backward process for the first 5K epochs of each round, discretizing backward paths from Brownian
bridges initialized with empirical samples collected by Searchers. We also use randomized time
scheduling introduced in [6] for our method. We train PIS at a learning rate of 1𝑒 − 4, TB at a
learning rate of 2𝑒 − 4, and SGDS at a learning rate of 5𝑒 − 4. We use 4 and 32 batch sizes for
all methods except PIS in LJ-13 and LJ-55, respectively. For PIS, we halve these sizes due to the
memory limitation required by the forward SDE computational graph.

Alanine Dipeptide. We perform two rounds of search using under-damped Langevin dynamics. In
each round, we run four parallel simulations of 55 ps each, with a time step of 0.5 fs, requiring 440K
energy evaluations. We discard the first 5 ps of each trajectory as burn-in, then collect 400K samples.
Each simulation starts from the same initial position drawn from a Dirac delta distribution, with all
initial velocities set to zero. We integrate equations of motion using the Euler–Maruyama integrator,
set the friction coefficient 𝛾 = 1, and use temperature 𝑇 = 600𝐾 for the first round Searcher and
𝑇 = 300𝐾 for the second round Searcher.

Similar to LJ potentials, all models utilize five EGNN layers with 128 hidden dimensions. We use
a Dirac delta prior distribution at the origin and a mean-free forward transition kernel to guarantee
𝐸 (3)-equivariance of the marginal density in inference. The Learner network comprises five EGNN
layers, while the predictor network and target network in the RND framework contain three and two
layers, respectively. As in LJ potentials, we use the Brownian motion coefficient of 0.2. We run 10K
epochs in the first round and 20K epochs in the second. As in LJ-55, we maximize the log-likelihood
for the first 5K epochs each round. We also utilize randomized time scheduling for our method. We
train PIS at a learning rate of 1𝑒 − 4 and all other methods at 5𝑒 − 4. We use a 16 batch size for all
methods except PIS, which uses an 8 batch size due to the memory limitation required by the forward
SDE computational graph.

In inference time, we follow [22]. We first align the topology of generated samples with the target
bond graph since the architecture and machine learning potential have a degree of freedom in atom
ordering. We first match the bond graphs of generated samples with a given bond graph of interest
and then correct the chirality of the generated sample to fit the target molecular configuration. The
generated sample is rejected if the bond graph is not isomorphic to the target bond graph.

A.4 Task details

40-Component Gaussian Mixture Model (40GMM). The 40-component Gaussian Mixture Model
(GMM) consists of a mixture distribution of 40 Gaussian components, each characterized by a distinct
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Table 6: ELBO, EUBO, their gap, and Energy calls on 40GMM and Manywell-32.

40GMM (𝑑 = 2) Manywell (𝑑 = 32)

Method ELBO ↑ EUBO ↓ Gap ↓ Energy calls ELBO ↑ EUBO ↓ Gap ↓ Energy calls

PIS+LP −1.32 ± 0.07 2.42 ± 0.20 3.75 ± 0.22 300M 160.83 ± 0.41 180.49 ± 4.76 19.66 ± 4.78 300M
TB+LP −0.35 ± 0.03 0.53 ± 0.04 0.87 ± 0.03 160M 161.42 ± 0.40 195.89 ± 8.14 34.37 ± 8.15 300M
FL-SubTB+LP −0.36 ± 0.01 0.58 ± 0.08 0.94 ± 0.07 260M 160.74 ± 0.15 215.93 ± 4.52 55.19 ± 4.52 330M
TB+LS+LP −0.38 ± 0.03 0.32 ± 0.02 0.69 ± 0.02 320M 162.95 ± 0.08 166.30 ± 0.11 3.35 ± 0.14 320M
TB+Expl+LP −0.37 ± 0.01 0.32 ± 0.02 0.69 ± 0.02 300M 160.76 ± 0.13 215.92 ± 14.90 55.16 ± 14.90 300M
TB+Expl+LS+LP −0.37 ± 0.01 0.34 ± 0.02 0.71 ± 0.02 320M 162.97 ± 0.06 166.25 ± 0.10 3.28 ± 0.12 320M

PIS −2.03 ± 0.22 55.48 ± 10.71 57.50 ± 9.02 100M 159.71 ± 1.70 333.79 ± 3.98 174.08 ± 4.33 100M
TB −1.35 ± 0.04 99.04 ± 6.01 100.40 ± 5.67 100M 160.58 ± 0.87 439.28 ± 166.52 278.70 ± 166.49 100M
TB+LS −0.38 ± 0.03 0.83 ± 0.46 1.21 ± 0.38 290M 163.12 ± 0.10 166.05 ± 0.12 2.93 ± 0.16 290M
TB+Expl+LS −0.38 ± 0.05 0.58 ± 0.34 0.96 ± 0.34 290M 160.87 ± 3.31 168.27 ± 1.49 7.40 ± 3.63 290M
GAFN ∗ ∗ ∗ N/A 161.02 ± 0.05 282.40 ± 2.02 121.38 ± 2.02 100M
iDEM −2.14 ± 0.45 12.75 ± 3.67 14.89 ± 3.70 300M 142.23 ± 0.40 211.56 ± 2.53 69.33 ± 2.56 300M

Ours (round 1) −0.40 ± 0.01 0.33 ± 0.02 0.73 ± 0.02 6M 162.49 ± 0.05 166.60 ± 0.01 4.11 ± 0.05 9M
Ours (round 2) −0.40 ± 0.03 0.33 ± 0.05 0.73 ± 0.05 12M 162.63 ± 0.01 166.48 ± 0.03 3.85 ± 0.03 20M

mean vector 𝜇𝑖 . The energy function for the GMM is defined as:

E(𝑥) = − log

(
1
𝑛

𝑛∑︁
𝑖=1
N(𝑥; 𝜇𝑖 , 𝜎2𝐼)

)
,

where 𝑛 = 40, the weight of each 𝑖-th Gaussian component is the same, and N(𝑥; 𝜇𝑖 , 𝜎2𝐼) is the
probability density function of the multivariate Gaussian distribution.

ManyWell distributions. The Manywell potential describes a high-dimensional energy landscape
containing multiple wells (local minima), each representing stable states with distinct energy levels.
The energy function of Manywell distribution is given by:

E(𝑥) =
𝑛∑︁

𝑘=1
(𝑥4

2𝑘−1 − 6𝑥2
2𝑘−1 −

1
2
𝑥2𝑘−1 +

1
2
𝑥2

2𝑘) + 𝐶,

where 𝑛 = 𝑑/2 is the number of wells, and 𝑑 is the dimensionality of the landscape. Adjusting
the dimensionality 𝑑 = 2𝑛 allows varying the number of wells and complexity, creating tasks like
Manywell-32, Manywell-64, and Manywell-128.

Lennard-Jones (LJ) potentials. The Lennard-Jones potential models the interactions between
particles. The energy function is defined as:

E(𝑥) = 2𝜅
∑︁

1≤𝑖< 𝑗≤𝑁
𝜖

[(
𝜎

𝑟𝑖 𝑗

)12
− 2

(
𝜎

𝑟𝑖 𝑗

)6
]
+ 𝜆

2

𝑁∑︁
𝑖=1
∥𝑟𝑖 − 𝑟𝑐𝑚∥2, (23)

where 𝜖 and 𝜅 are parameters defining the depth of the potential well and the energy factor, respectively.
𝑟𝑖 𝑗 = ∥𝑥𝑖 − 𝑥 𝑗 ∥ represents the Euclidean distance between particles 𝑖 and 𝑗 . 𝜎 is the characteristic
distance at which the potential between two particles vanishes, often interpreted as the van der Waals
radius. In our experiments, we set all parameters to 1.0, i.e., 𝜅 = 𝜖 = 𝜎 = 𝜆 = 1.0. Adjusting the
number of particles creates tasks such as LJ-13 and LJ-55, increasing the complexity of the particle
interactions and resulting in a rugged energy landscape.

TorchANI potential for Alanine Dipeptide. We leverage TorchANI [16], a PyTorch implementation
of ANI deep-learning potentials trained on quantum-mechanical reference data, to accurately calculate
molecular energies. It provides transferable machine learning potential trained on organic molecules
for efficient energy and force evaluations with accuracy comparable to density-functional theory
(DFT). In particular, TorchANI excels at modeling small to medium-sized organic molecules such as
alanine dipeptide.

B Additional experimental results

B.1 Low-dimensional standard benchmarks

Baselines and settings. We benchmark our framework on two standard low-dimensional tasks:
40GMM and Manywell-32. Consistent with the high-dimensional experiments, we report ELBO,
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(a) Ground Truth (b) SGDS (c) PIS+LP (d) TB+Expl.+LS (e) iDEM

Figure 5: Mode coverage comparison on 40GMM.
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(e) SGDS (𝑑 = 128)

Figure 6: KDE figures of AIS(𝑇 = 100), ours, and true samples on Manywell-32/64/128.

EUBO, their gap, and the number of energy calls required during training. We employ the same
baseline methods and trajectory configurations (including trajectory length and training objectives) as
in the high-dimensional settings. We provide detailed configurations, including diffusion scales for
each task, in Appendix A.

Results. As demonstrated in Table 6, our method achieves competitive performance on lower-
dimensional standard tasks, producing EUBO and ELBO metrics comparable to the strongest base-
lines, while using significantly fewer energy calls. On the 40GMM task, despite some baselines
reporting strong ELBO and EUBO scores, they notably fail to capture the mode located at the
bottom-right corner (see Figure 5). In contrast, our framework reliably identifies all modes without
sacrificing performance metrics. We report both the first-round and second-round performances of
our method, showing that our method attains robust performance on low-dimensional tasks even in
the first round, with a slight but consistent improvement observed in the second round.

B.2 Debiasing of Learner from MCMC Searcher

To address potential biases inherent in MCMC sampling due to finite-length chains, our framework
incorporates both off-policy TB training using samples from the Searcher and on-policy TB training.
This design choice aims to mitigate biases arising from the Searcher samples alone by enabling the
Learner model to adjust toward the target distribution.

To evaluate whether the Learner effectively debiases the samples collected by the Searcher, we
compare kernel density estimations (KDE) of samples obtained by the AIS Searcher with those
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generated by the on/off-policy TB Learner on Manywell distributions. Figure 6 illustrates these KDE
comparisons across dimensions 32, 64, and 128.

Due to the varying mode masses assigned in Manywell distributions, even when AIS successfully
covers all modes with limited budgets, it struggles to precisely capture the relative mode masses.
In contrast, the KDE of the samples generated by the Learner aligns more closely with the true
density, effectively reflecting the relative importance of different modes. This result highlights the
effectiveness of combining on- and off-policy training to achieve better density approximation than
relying solely on finite-budget AIS samples.

C Limitations

While our framework demonstrates strong empirical performance, several limitations remain.

First, the effectiveness of intrinsic rewards from RND depends on careful tuning of the novelty scale
parameter 𝛼. Poorly calibrated 𝛼 can overly emphasize exploration, producing noisy or irrelevant
samples, or conversely yield overly conservative exploration. This could be mitigated by employing
adaptive strategies that dynamically adjust 𝛼 during sampling based on diversity metrics or exploration
progress signals.

Additionally, the quality of samples provided by the Searcher sets a fundamental exploration limit.
If the Searcher fails to adequately explore challenging modes, the Learner will inevitably inherit
these limitations, particularly in high-barrier energy landscapes. Introducing enhanced exploration
strategies, such as parallel tempering or more advanced proposal schemes like HMC, could improve
coverage of hard-to-sample modes.
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