Learning Collective Variables from Time-lagged Generation

Anonymous Authors'

Abstract

Rare events such as state transitions are difficult to
observe directly with molecular dynamics simula-
tions due to long timescales. Enhanced sampling
techniques overcome this by introducing biases
along carefully chosen low-dimensional features,
known as collective variables (CVs), which cap-
ture the slow degrees of freedom. Machine learn-
ing approaches (MLCVs) have automated CV dis-
covery, but existing methods typically focus on
discriminating meta-stable states without fully en-
coding the detailed dynamics essential for accu-
rate sampling. We propose TLC, a framework that
learns CVs directly from time-lagged conditions
of a generative model. Instead of modeling the
static Boltzmann distribution, TLC model a time-
lagged conditional distribution yielding CVs to
capture the slow dynamic behavior. We validate
TLC on the Alanine Dipeptide system using two
CV-based enhanced sampling tasks: (i) steered
molecular dynamics (SMD) and (ii) on-the-fly
probability enhanced sampling (OPES), demon-
strating equal or superior performance compared
to existing MLCV methods in both transition path
sampling and state discrimination.

1. Introduction

Understanding rare events in molecular systems, such as
ligand binding in drug discovery (De Vivo et al., 2016; Abel
et al., 2017), conformational changes in protein folding
(Piana et al., 2012; Seong et al., 2025), and phase transfor-
mations in materials science (Lookman et al., 2019; Spotte-
Smith et al., 2022) is essential in biology and chemistry.
However, these transitions involve crossing high free-energy
barriers between meta-stable states, making them exceed-
ingly rare and challenging to observe directly using conven-
tional molecular dynamics (MD) simulations.
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To accelerate this sampling challenge, numerous enhanced
sampling techniques have been developed. For example,
replica-exchange MD (Sugita & Okamoto, 1999) exchanges
configurations between parallel simulations at different tem-
peratures, while accelerated MD (Hamelberg et al., 2004)
globally boosts the potential energy surface to overcome
energy barriers. Many prominent enhanced sampling tech-
niques, including Metadynamics (Barducci et al., 2011) and
on-the-fly probability enhanced sampling (Invernizzi & Par-
rinello, 2020, OPES), rely on biasing the simulations along a
molecular configuration projected on to a set of coordinates,
known as Collective Variables.

Collective variables (CVs) are low-dimensional functions
of atomic coordinates designed to represent the transition-
relevant slow degree of freedom (Torrie & Valleau, 1977;
Valsson et al., 2016). By applying biases along these CVs in
simulations, enhanced sampling techniques efficiently drive
the configuration over energy barriers and enable transitions
between meta-stable states. For example, Metadynamics
(Barducci et al., 2011) and OPES (Invernizzi & Parrinello,
2020) employ time-dependent bias potentials to progres-
sively fill free-energy wells along the CV space, thereby
accelerating transitions. Furthermore, steered molecular dy-
namics (Izrailev et al., 1999; Fiorin et al., 2013, SMD) adds
a harmonic restraint along the CVs, pulling the molecular
configuration from one state to another. Although enhanced
sampling techniques can operate without well-defined CVs,
their efficiency, interpretability, and effectiveness are signif-
icantly reduced.

Recently, machine learning (ML) methods have emerged
as a promising approach for automating CV discovery, re-
ducing reliance on human intuition, domain knowledge,
and extensive trial and error. Supervised methods, such as
DeepLDA (Bonati et al., 2020) and DeepTDA (Trizio & Par-
rinello, 2021), train neural networks to discriminate labeled
meta-stable states. Time-lagged methods, including Deep-
TICA (Bonati et al., 2021) and time-lagged autoencoders
(Bonati et al., 2021; Wehmeyer & Noé, 2018, TAE) explic-
itly incorporate temporal correlations by reconstructing or
predicting time-lagged configurations.

In this work, we propose TLC, a novel framework for dis-
covering CVs from time-lagged conditional distributions
learned via generative modeling. Using the transferable
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Boltzmann generators (Klein & Noé, 2024, TBG), we model
the time-lagged conditional distribution p(z;y, | ;) of
time lag 7, rather than the equilibrium Boltzmann distribu-
tion p(x). Inspired by the concept of time-lagged encoder
(Wehmeyer & Noé, 2018, TAE), we encode a molecular con-
figuration x; into a low-dimensional condition s; and train
the generative model to predict a time-lagged configuration
T4 resulting CVs to capture slow dynamics. Furthermore,
we benchmark TLC against existing MLCVs approaches
with two downstream enhanced sampling techniques; on-
the-fly probability enhanced sampling (Invernizzi & Par-
rinello, 2020, OPES) and additionally steered molecular
dynamics (Izrailev et al., 1999; Fiorin et al., 2013, SMD),
on the Alanine Dipeptide system without using any transi-
tion data. In short, our contributions can be summarized as
follows:

* We introduce a novel framework for learning collective
variables from the time-lagged conditions of a genera-
tive modeling approach.

* We demonstrate that our MLCVs captures the slow
degree of freedom with two CV-based enhanced sam-
pling techniques, achieving competitive or superior
performance compared to existing methods.

2. Background

Molecular dynamics simulations. Molecular dynamics
(MD) describe the temporal evolution of molecular sys-
tems by integrating stochastic differential equations (SDEs).
In particular, we consider under-damped Langevin dynam-
ics (Bussi & Parrinello, 2007), which combine deterministic
forces with stochastic fluctuations as follows:

dxt = V¢ dt, (1)
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Here, x; and v; denotes atomic position and velocity at time
t, m the diagonal matrix consisting of the mass of the cor-
responding atom, U (x) the potential energy function, and
VU (z;) its gradient concerning position, i.e., the negative
force. Parameters v, k, T and W, represents the friction co-
efficient, the Boltzmann constant, the absolute temperature,
and the standard Brownian motion, respectively. Despite
their theoretical accuracy, conventional MD simulation face
practical time scale limitations that hinder observation of
rare events, such as transitions between meta-stable states.

Enhanced sampling. Enhanced sampling techniques play
a vital role in modern simulation techniques, overcoming
timescale limitations inherent to standard MD simulations
enabling efficient exploration of rarely visited molecular
states (Torrie & Valleau, 1977; Valsson et al., 2016; Inv-
ernizzi & Parrinello, 2020; Barducci et al., 2011; Fiorin

et al., 2013). Many enhanced samplings rely on collective
variables (CVs) as reaction coordinate, biasing simulations
along these coordinates to facilitate transitions. For exam-
ple, on-the-fly probability-enhanced simulations (Invernizzi
& Parrinello, 2020, OPES) construct time-dependent bias
potential on previously observed CV values, accelerating
rare transitions and exploring high-energy regions.

Collective variables (CVs). CVs are low-dimensional
functions of atomic coordinates designed to capture the
system’s slow dynamical modes and essential transition
pathways (Bonati et al., 2023). Formally, given a molec-
ular configuration x € R3N where N is the number of
particles, CVs are defined by a small set of functions
s = (&(z)E,(k < 3N) where &;(z) are scalar func-
tions. For example, the two backbone dihedral angles ¢, ¥
are optimal CVs for the Alanine Dipeptide system. Ad-
ditionally, effective CVs serve as reaction coordinates for
enhanced sampling techniques such as Metadynamics (Bar-
ducci et al., 2011) and umbrella sampling (Torrie & Valleau,
1977; Laio & Parrinello, 2002). Importantly, an effective
CV must satisfy three key criteria as follows:

» Capable of distinguishing meta-stable states

e Limited in number, ensuring low dimensionality

* Encoding the slow degree of freedom, i.e., character-
izing the correct transition state when using a biasing
force or potential to overcome the energy barrier

where the third criterion is considered particularly challeng-
ing (Fu et al., 2024; Barducci et al., 2011; Bonati et al.,
2023). It ensures that the CV-based biasing force or poten-
tials will guide the system over free energy barriers via phys-
ically and realistically transition paths, resulting in lower
maximum energy in transition paths.

Machine learning CVs. DeepLDA (Bonati et al., 2020),
DeepTDA (Trizio & Parrinello, 2021) have discovered CVs
based on discriminant analysis methods, using binary labels
dependent on ¢. On the other hand, DeepTICA (Bonati
et al., 2021), time-lagged autoencoder (Wehmeyer & Noé,
2018, TAE), and variational dynamics encoder (Herndndez
et al., 2018, VDE) have used time-lagged data to learn
collective variables. To be specific, DeepTICA applies
time-lagged independent component analysis (Molgedey
& Schuster, 1994, TICA) on representation reduced by the
encoder network, while TAE and VDE reconstruct a time-
lagged configuration x; , from the current configuration x
with autoencoders (Rumelhart et al., 1985) and variational
autoencoders (Kingma & Welling, 2014).
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Figure 1. Overview of our method. We train an additional MLCV model f4() as conditions to a generative model gy() to learn the
collective variables. To be specific, the MLCV model computes a reduced representation s; from a frame x, while the generative model
aims to construct the molecular configuration x4, with a condition ss.

3. Learning CVs from time-lagged conditions

In this section, we first outline our motivation, building upon
prior methods and recent advances in generative models that
approximate the Boltzmann distributions. We then present
our proposed approach for learning collective variables from
time-lagged conditions of generative models.

3.1. Generative models

Motivation. Previous works, such as TAE (Wehmeyer &
Noé, 2018), utilize time-lagged data to learn collective vari-
ables. Given a molecular configuration z; at time ¢, it re-
constructs a time-lagged data by ¢4+ = hipeta(fheta(Tt))
where f;heta() is an encoder and hypetq() is a decoder of
an autoencoder (Rumelhart et al., 1985). Stemming from
this, we extend this approach using recent generative models
that learn the Boltzmann distribution (Noé et al., 2019).

Continuous Normalizing Flows. We leverage generative
models that learn the Boltzmann distribution (Klein & Noé,
2024, TBG) with continuous normalizing flow (Chen et al.,
2018; Grathwohl et al., 2019, CNFs). CNFs map a simple
prior distribution pg(x) to a target distribution p; (), e.g.,
from a Gaussian noise to the Boltzmann distribution ¢(z)
exp(—U(z)/kpT). Formally, the flow ¢, is defined by the
ordinary differential equation (ODE) as follows:

d
@gbr(x) :ur((br(x)) ) ¢O(m) ~ Po, 3
where u,(z) : R — R” is a time-dependent vector field.
Note that we use r for time index, to avoid confusion with
the MD time step ¢. Generative model parameterizes the
vector field u, () using E(3)-equivariant graph neural net-

works (Satorras et al., 2021, EGNN), enabling direct gener-

ation of molecular configurations in Cartesian coordinates.
However, simulation-based training of CNFs is typically
computationally expensive.

Flow matching. To alleviate the computational burden, tex-
titflow matching (Lipman et al., 2023; Liu et al., 2023) is
used, a simulation-free and computationally efficient train-
ing method. Specifically, flow matching directly trains a
vector field by minimizing a regression between the pre-
dicted and conditional vector field u;(z|z) as follows:

ECFM(G) = ]Er~[0,1],z~pr(z|z)Hv9<xa T) —Ur(fﬂ|z)||§a - @

For the conditional vector field u:(z|z), a simple yet power-
ful parameterization as follows:

ur(r|2) = 1 — 20, 5)
pr(z|z) = N(z|r-21 4+ (1—71)-20,0%),  (6)

where z is xg.

3.2. Conditional Boltzmann distribution

Time-lagged conditions. We now extend the generative
backbone to model the conditional Boltzmann distribution
q(xi4-|st), given a time-lagged molecular configuration
pair (x¢, x4+, ) where ¢ denotes the timestep in a simulation,
7 denotes a fixed lag time. While one can consider learning
conditions from a pre-trained model (Zhang et al., 2023), we
train both the generative backbone and the MLCV encoder
from scratch. Our MLCV encoder f;heta implemented as
a simple MLP, compresses the current molecular configura-
tion into a low-dimensional condition MLCV s;. We con-
catenate s; with the initial node features of the EGNN, thus
conditioning the generative flow on this low-dimensional
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Figure 2. Ramachandran plot of MLCVs marginalized over the two dihedral angles and the energy landscape. Two meta-stable states
C5 and C'7,, are each denoted by a white circle and a star. For visualization and simplicity, collective variables are normalized from
(1, —1) based on Metadynamics samples, and the collective variables of the meta-stable state C'5 are set to positive. While all methods
discriminate two meta-stable states, DeepLDA, DeepTICA, and VDE fail to show the slow degree of freedom visualized in (a).
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Figure 3. MLCVs sensitivity against the top ten input features, i.e., heavy atom distance or RMSD aligned heavy atom coordinates.
Sensitivity is computed as the gradients of MLCVs against input features and averaged over the projection dataset.

representation. The conditional flow matching loss from  we define the autocorrelation loss as follows:

Equation (4) incorporates these conditions as follows:

]E -5 T 5 T
Lac(0) = — [(s¢ S;)(;w Styr)] : 9)
St Sttr

Lric(0) =B (or,z0,0) [vo(@e, tlse) — ue(z]2)[?] , (7)
St = fG(xt)a (8)

where 5; and o, denote the mean and standard deviation of
encoded collective variables for a batch of data. Eventually,
we combine this loss with the conditional flow matching

Intuitively, the MLCV encoder is encouraged to encode loss into the following:

information capturing the slow degree of freedom in the

. A Liotal(0) = L11.c(0) + ALac(6)
molecular system, as it learns the distribution of future

(10)

molecular configurations from the current state. We provide
an overview of our method in Figure 1.

Autocorrelation loss. Inspired by the Variational Dynamics
Encoders (Herndndez et al., 2018, VDE), we further pro-
pose an additional autocorrelation loss to ensure temporal
consistency in the learned CVs sy, s;4,. Maximizing the au-
tocorrelation results in CVs to remain similar over the time
lag 7, highlighting the slow degree of freedom. Formally,

where A is a scaling factor for the autocorrelation loss. We
provide ablation studies demonstrating the benefit of the
autocorrelation loss in Appendix A.

Invariant representations. While prior generative mod-
els utilize SE(3)-equivariant flows to generate Cartesian
coordinates of molecular configurations, CVs should re-
main invariant under rotations and translations. Unlike prior
works using invariant features such as heavy atom distances
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Figure 4. Ramachandran plot of 64 trajectories of length 1000 fs by unbiased MD and steered MD simulations using MLCVs. Initial
state C and the target state C7,, are each denoted as white circles and stars. The red circle indicates the target hit region.

(Bonati et al., 2020; Trizio & Parrinello, 2021; Bonati et al.,
2021), we retain raw Cartesian coordinates but enforce in-
variance through rigid-body alignment to a reference con-
figuration, minimizing the Euclidean distance. Specifically,
we align every configuration to the C'5 meta-stable state via
the Kabsch algorithm (Kabsch, 1976). This RMSD-based
alignment significantly enhanced the efficacy of our learned
CVs, as we experimentally shwosn in Appendix A.

4. Experiments

In this section, we evaluate how well our machine-learned
collective variables (MLCVs) capture the system’s slow
degrees of freedom. First, steered molecular dynamics
(Izrailev et al., 1999; Fiorin et al., 2013, SMD), applying
a biasing force based on MLCVs to measure its ability to
drive transitions along slow modes. Additionally, we use
on-the-fly probability-enhanced sampling (Invernizzi & Par-
rinello, 2020, OPES) to compare the distributions sampled
by MLCVs against those from known, optimal CVs (dihe-
dral angles) as in Bonati et al. (2020). All experiments are
conducted on the Alanine Dipeptide system. Note that the
optimal CVs for the two enhanced sampling techniques are
different, where SMD requires a slow degree of freedom re-
lated to transitions, while OPES requires the slowest degree
of freedom between two meta-stable states.

Alanine Dipeptide. Alanine Dipeptide is a widely stud-
ied molecular system consisting of 22 atoms, where the

backbone dihedral angles ¢ and v are known to be the op-
timal collective variables. We use two meta-stable states
defined by these angles: C5 at (—2.49, 2.67) and C7,;
at (1.02, —0.70) in the (¢,) space. While we do not
use these angles directly during training, we use them for
ground-truth references and visualization purposes.

Simulation data. To ensure a fair comparison, all models
were trained on identical datasets, with the MLCV dimen-
sion fixed to one. We generate ten 10 ns trajectories using
OpenMM (Eastman et al., 2023), initializing five trajecto-
ries each in the C5 and C7,, meta-stable states. Training
data were then randomly extracted from these trajectories,
explicitly excluding transition events, i.e., the sign of ¢ re-
mains consistent between any paired time-lagged data z;
and x4 . We provide more details in Appendix B.

Baselines. We compare our approach TLC with both su-
pervised and time-lagged methods. Supervised baselines in-
clude DeepLDA (Bonati et al., 2020) and DeepTDA (Trizio
& Parrinello, 2021), which rely on ¢-based binary labels.
Time-lagged approaches include DeepTICA (Bonati et al.,
2021), time-lagged autoencoder (Wehmeyer & Noé, 2018,
TAE), and variational dynamics encoder (Hernandez et al.,
2018, VDE). For additional details, refer to Appendix C.

Visualization. Also, we visualize the MLCVs in Figure 2.
To be specific, we collect diverse configurations with Meta-
dynamics and marginalize the values over the dihedral an-
gles. All methods distinguish the two meta-stable states C'5
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Figure 5. Free energy surface (FES) of MLCVs, averaged over four OPES simulations. Samples from OPES simulations are reweighted
to compute the free energy for each MLCVs value, and local minima in each FES curve refer to capturing the meta-stable state basin.
DeepLDA, DeepTDA, and DeepTICA show two meta-stable state basins, while TAE and TLC show three meta-stable state basins.

However, VDE only captures one meta-stable state basin.

and C'7,,,, while the detailed slow degree of freedom differs.
For details on Metadynamics, refer to Appendix D.

Sensitivity analysis. Finally, we present the sensitivity of
MLCVs against the input (Bonati et al., 2023) in Figure 3.
Among input features, we plot the top ten features and color-
highlight the top three. Y-axis denotes the atom type and
index in the Alanine Dipeptide system. Dihedral angles are
computed from the 4, 6, 8, 14, and 16th atoms, MLCVs
show high correlation with the dihedral angles.

4.1. Steered Molecular Dynamics (SMD)

SMD (Izrailev et al., 1999; Fiorin et al., 2013) is an en-
hanced sampling technique that steers the molecular con-
figuration to a target state with a time-dependent bias. It
requires the CV to encode the system’s slow degree of free-
dom not only for distinguishing the meta-stable states, but
also for transition paths between the meta-stable states. To
be specific, the bias is computed as the time interpolation of
the initial and target state CVs as follows:

k (tstargel + (T - t)sinitial

Uz, t)=— T

2
2 —fg(ﬂ?)) ) (]1)

where ¢ denotes the current time step, 7' the simulation
time horizon, k the force constant, x the current molecular
configuration, and Sgyger, Siniial €ach denotes the CVs of
the initial and target meta-stable state. Intuitively, the bias
potential of Equation (11) encourages the CVs to linearly
evolve towards the target meta-stable state value starting
from the initial meta-stable state value. If machine learned

Table 1. Quantitative metrics of MLCV SMD simulations.
RMSD and target hit percentage (THP) are averaged over 256
trajectories, while max energy (Erg) is averaged over trajectories
only hitting the target state. Best results are highlighted in bold
and second in underline, excluding the reference simulation.

RMSD () THP (1) Ers (})
Method k A % kJmol !
Ref (phi, psi) 200 | 10640 10000  -3.89 % 5.80
DeepLDA 600 | 1.1678 390 88750 + 21136
DeepTDA 500 | 11043 4804  904.06 + 261.26
DeepTICA 400 | 0.9729 850 81452+ 11574
TAE 1200 | 1.0086 5859 75541 +92.30
VDE 700 | 0.8582 508 90169 + 11559
TLC Ours) 300 | 09593 6093  33.58 - 15.19

CVs well reflects the slow degree of freedom, the system
will transition smoothly with a minimum energy penalty.

Metrics. We quantitatively evaluate transition path from
MLCVs steered MD of length 1000 fs with three metrics
(Seong et al., 2025; Holdijk et al., 2023): (i) root mean
square distance (RMSD), (ii) target hit percentage (THP),
and (iii) transition state energy (E7s). RMSD computes
the Euclidean distances between atoms of the closest state
in the transition path to the target state, aligning the states
using the Kabsch algorithm (Kabsch, 1976). Next, THP
measures the number of paths that arrive near the target
meta-stable state with a dihedral angle threshold, i.e., L2-
distance smaller than 0.5° for the two dihedral angles ¢ and
1. Finally, the transition state energy measures the ability
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Figure 6. ¢-angle distribution of a single OPES Metadynamics simulation. ¢ distribution close to a uniform indicates that the MLCVs
successfully mimic the effect of the known optimal CVs, i.e., the backbone dihedral angle ¢. While most methods show a uniform ¢
distribution, TAE fails to show frequent transitions between the two meta-stable states.

to identify the transition state in terms of energy, a lower
energy would refer to more physically realistic transition
paths. Additionally, we sweep the force constant k since
there exists a tradeoff between the target hit probability
with max energy, and report the highest success rate under a
maximum energy threshold of 1000 kJmol .

Transition paths. In Table 1, one can see that TLC out-
performs baselines in for THP and Erg, while DeepTICA
shows the smallest RMSD. Surprisingly, TLC yields much
lower values in Erg compared to prior works, implying
TLC generates a realistic transition path from meta-stable
state C'5 to meta-stable state C'7,,. Additionally, in Fig-
ure 4, prior works mostly reach the target meta-stable state,
ignoring the energy landscape. In contrast, TLC crosses the
low energy points in the energy barrier located at ¢ = 0 and
reaches the target meta-stable state with high probability.

4.2. On-the-fly Probability-Enhanced Sampling (OPES)

OPES (Invernizzi & Parrinello, 2020) is an enhanced sam-
pling technique that adaptively constructs a bias potential
to accelerate exploration in the CV space. It aims for an
equilibrium sampling of the molecular configuration. To be
specific, the probability distribution at the n-th iteration is
as follows:

_ > op wipG(s, sk)

P’ﬂ,(s) Zn Wi ? k= GBVkil(Sk) )
k

(12)

where wy, denotes the bias potential of the previous iter-
ation, [ the inverse temperature, and G(s, si) the multi-
variate Gaussian. Additionally, the bias potential V,,(s) in

Table 2. Free-energy difference AF' between two meta-stable
state C5 and C'7,z, averaged over four OPES simulations.
Free energy difference values within the range of 0.5 kT =~
1.25 kJmol ™! from the value of reference OPES simulations are
considered to capture the slow degree of freedom.

Method SIGMA | AF

Ref (¢, ©) 0.05 \ 10.06 + 0.22
DeepLDA 0.05 10.50 £ 0.80
DeepTDA 0.20 10.01 + 0.49
DeepTICA 0.10 9.99 +0.21

TAE 0.05 922+ 1.74

VDE 0.05 10.11 + 0.28

TLC (Ours) 0.05 9.83 + 1.15

Equation (12) is computed as follows:
1\ 1 P,(s)
Via(s) = (1 - f) =1 ( n ) 13
n(s) ,y /8 Og Zn + € ( )

where Z,, denotes the normalization factor, ~ the broaden-
ing of the base distribution, and ¢ is a regularization term
limiting the maximum value of the bias for the exploration
of higher free-energy regions. Intuitively, OPES adds bias
in the CV-space targeting a uniform distribution, where CVs
encoding the slow degree of freedom would result in better
exploration. Results are averaged over four independent
simulations, and a 100 ns OPES reference simulation using
the dihedral angles ¢ and 1) serves as the ground truth.

Free energy surface. First of all, we plot the free energy
surface (FES) along the MLCVs in Figure 5. The FES is
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Figure 7. Free energy difference between two basins averaged over four OPES Metadynamics simulations. The first 3 ns have been
discarded, and AF is updated every 1 ns. Convergence to the reference value within 0.5 kT ~ 1.25kJmol !, i.e, the red region, is

considered to reproduce the known CVs (two dihedral angles).

computed by binning the MLCV values sampled during
the OPES simulations and applying Boltzmann inversion to
estimate free energy. These plots illustrate different meth-
ods’ ability to recover the system’s slow degree of free-
dom. DeepLDA, DeepTDA, and DeepTICA capture two
metastable states basins, while TAE and TLC identify three
metastable states. However, VDE falls short on the FES,
where it only shows one metastable state basin.

Phi distribution. Next, we compare the ¢ distribution of
the OPES simulations as in Bonati et al. (2020); Trizio &
Parrinello (2021). CVs capturing the slowest degree of
freedom will distinguish and keep drive transitions between
the two meta-stable states throughout the OPES simulation,
mimicking the effect of dihedral angles. In Figure 6, all
methods except TAE effectively drive transitions between
the two meta-stable states, validating their ability to capture
the slow degree of freedom as in dihedral angles.

Free energy convergence. Finally, we monitor the conver-
gence of the free energy difference between two basins. CVs
capturing the slow degree of freedom will effectively drive
the transition between meta-stable states and result in a sim-
ilar free energy difference. Additionally, free energy differ-
ences falling within the range of 0.5 kT ~ 1.25 kJmol !
from the reference value are considered to reproduce the
slowest degree of freedom (Invernizzi & Parrinello, 2020;
Bonati et al., 2020). Formally, the free energy difference
between two basins is defined as follows:

-BF(¢)q
AF = Lioga® i

B [y T @ds o

where [ denotes the inverse temperature, F(¢) the
reweighted free energy, A and B each the regions corre-
sponding to ¢ > 0 and ¢ < 0. The first 3 ns of the OPES
simulations are discarded, and AF' is updated every 1 ns
(Bonati et al., 2020). In Figure 7 and Table 2, most methods
quickly converge to the reference free energy difference
value, while TAE exhibits high variance.

5. Conclusion

We present a framework for learning collective variables
from the time-lagged conditions in a generative model, cap-
turing the slow degree of freedom. While VDE has first
applied generative models to learn collective variables, it
shows poor performance for steered MD. On the other hand,
TLC shows superior performance in steered molecular dy-
namics tasks and competitive performance in free energy
convergence for OPES simulations. An interesting future
work would be investigating which collective variables are
optimal for each enhanced sampling tasks.

Impact Statement

This work advances machine learning methods for molec-
ular simulation by improving the automated discovery of
collective variables, which may accelerate research in drug
design and materials science. While our methods pose no
direct ethical risks, they contribute to broader capabilities in
modeling complex chemical and biological systems.
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A. Ablation studies

We conduct ablation studies to empirically verify two components of our framework, and report results in Table 3
and Figure 8.
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Figure 8. Enhanced sampling results on component ablation studies. Each column from the left refers to the free energy difference
convergence, the phi distribution of OPES simulations, transition paths from SMD simulations, and MLCV Ramachandran plots.

Table 3. Ablation studies on the components of TBGCV. w/o coord. refers to using heavy atom distances instead of RMSD-aligned heavy
atom coordinates. Best results are highlighted in bold.

‘ TLC W/o coord. W/o ac. loss
AF 9.83 +1.15 4.13 +5.32 9.15 £ 1.66
RMSD () 0.9593 4.8773 3.4465
THP (1) 60.93 7.81 97.27

Erax (D) 33.58. £ 15.19 195.63 £19.55 116.58 £ 24.02

Autocorrelation loss. We introduced an additional autocorrelation loss term for our framework, which results in better
convergence in the free energy difference. In Figure 8, one can see that autocorrelation loss results in better free energy
difference convergence and a uniform phi distribution in OPES simulations. Nevertheless, there exists a minor tradeoff in
the performance of SMD simulations, where the autocorrelation loss degrades performance.

Input representation. While prior works mainly use heavy atom distance as input representation, we instead propose to use
Cartesian coordinates with RMSD aligned to a reference state, e.g., the C'5 meta-stable state. Consequently, we validate the
effectiveness of RMSD-aligned Cartesian coordinates against heavy atom distance. In Figure 8 and Table 3, one can see that
using RMSD-aligned coordinates clearly shows better performance compared to heavy atom distance for both OPES and
SMD simulations. We also note that the Kabsch algorithm operates in O(n) where n denotes the number of atoms (Dolezal
et al., 2020).

11
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B. Dataset details
Table 4. Simulation details for collecting training data and projection data.
‘ Engine Time horizon  Time step Force field Solvent temperature (K)
Training OpenMM 10 ns 1fs amber99sbildn  tip3p 300
Projection | GROMACS 100 ns 2 fs amber99sbildn  tip3p 300

n n2 0 —n/2 -n n n2 0 —n/2 -n

Figure 9. 10ns simulation trajectories plotted on the Ramachandran plot. White circle and star each indicate meta-stable states C'5 and
C'7aq, respectively. The top and bottom row each refers to simulations starting from C'5 and C'7,, meta-stable states.

Training dataset. Data used for training models were all collected from simulations run by OpenMM (Eastman et al., 2023).
From each meta-stable state C'5 and C'7,,,, we run 5 10 ns simulations with a record frequency of 100 fs. Afterwards, we
randomly sample configurations from the trajectory. For the case of time-lagged data, we sample configurations with a time
lag of 1000 fs. No transition data, i.e., time-lagged data where the sign of ¢ is opposite, were included in the dataset.

Projection dataset. Alanine Dipeptide configurations used for projection and normalizing MLCVs were collected from
100ns Metadynamics simulations by GROMACS (Abraham et al., 2015) and PLUMED (Tribello et al., 2014). Coordinates
were recorded at a 100 fs frequency.

12
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C. Experimental details
C.1. Baselines

In this section, we provide the details of experiments and baselines. We report the detailed model configuration in Table 5.
For fair comparison, we used 100 for the hidden dimension across all models.

Input representation. We use heavy-atom-related information for input descriptors. For DeepLDA (Bonati et al., 2020),
DeepTDA (Trizio & Parrinello, 2021), and DeepTICA (Bonati et al., 2021), we use heavy atom distance as denoted, i.e.,
distances between atoms excluding Hydrogen. For the Alanine Dipeptide system, ten heavy atoms exist, resulting in 45
input descriptors. For other models, we use heavy atom coordinates by aligning the configuration to the C'5 meta-stable
state with the Kabsch algorithm (Kabsch, 1976).

Time-lag. We fix the time-lag tau at 1000 fs for all time-lagged methods. Importantly, no true transition events, i.e.,
crossing between C5 and C'7,,, are included in the training pairs (x¢, 1. ), ensuring that models do not simply memorize
completed transitions.

DeepLDA, DeepTDA. Both are supervised, discriminant-analysis approaches, where an encoder network maps the input
descriptors to an MLCV. Binary labels are used, dependent on the ¢ sign.

DeepTICA. DeepTICA combines a neural encoder with Time-lagged Independent Component Analysis (TICA) (Molgedey
& Schuster, 1994). It maximizes the autocovariance of the learned one-dimensional CV at lag 7, capturing the slowest linear
combination of features.

Time-lagged autoencoder (TAE). TAE is an unsupervised, reconstruction-based method (Wehmeyer & Noé, 2018). Its
encoder—decoder architecture is trained to reconstruct the future configuration x4, from z; via a low-dimensional bottleneck
CV, encouraging that CV to encode predictive, slow-varying information.

Variational Dynamics Encoder (VDE). VDE (Hernandez et al., 2018) extends the TAE with a variational autoencoder,
framing future-frame prediction as a latent-variable model. While C, contact distances were used at Hernandez et al. (2018),
we use RMSD aligned heavy atom distances since only two alpha carbons exist in the Alanine Dipeptide system.

Table 5. Details on model configurations. H.A. refers to heavy atoms.

Model ‘ Layers Input Representation Equi/in-variance
DeepLDA | [45, 100, 100, 100, 1] H.A. distance Invariance
DeepTDA [45, 100, 100, 1] H.A. distance Invariance
DeepTICA [45, 100, 100, 3] H.A. distance Invariance

TAE [30, 100, 100, 1] H.A. coordinate Invariance (RMSD align)
TLC ‘ [30, 100, 100, 1] H.A. coordinate Invariance (RMSD align)

C.2. Enhanced samplings
OPES. We all use PACE of 500 and BARRIER of 30kJmol !, with record frequency of 500.
SMD. We search force constant ranging from 100 to 1000, with steps of 100.
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D. Additional results

For steered MD simulations, we present additional figures on the energy and MLCYV values during the transition paths.
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Figure 10. Energy along the transition path of 64 trajectories in Steered MD simulations.
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Figure 11. MLCYV along the transition path of 64 trajectories from Steered MD simulations. Initial and goal states, i.e., meta-stable
states C'5 and C7 4, are each denoted in green and yellow horizontal lines.



