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ABSTRACT

Understanding transition pathways between two meta-stable states of a molecular
system is crucial to advance drug discovery and material design. However, unbiased
molecular dynamics (MD) simulations are computationally infeasible because of
the high energy barriers that separate these states. Although recent machine learning
techniques are proposed to sample rare events, they are often limited to simple
systems and rely on collective variables (CVs) derived from costly domain expertise.
In this paper, we introduce a novel approach that trains diffusion path samplers
(DPS) to address the transition path sampling (TPS) problem without requiring
CVs. We reformulate the problem as an amortized sampling from the transition
path distribution by minimizing the log-variance divergence between the path
distribution induced by DPS and the transition path distribution. Based on the log-
variance divergence, we propose learnable control variates to reduce the variance
of gradient estimators and the off-policy training objective with replay buffers and
simulated annealing techniques to improve sample efficiency and diversity. We
also propose a scale-based equivariant parameterization of the bias forces to ensure
scalability for large systems. We extensively evaluate our approach, termed TPS-
DPS, on a synthetic system, small peptide, and challenging fast-folding proteins,
demonstrating that it produces more realistic and diverse transition pathways than
existing baselines. We provide links to our project page and code.

1 INTRODUCTION

In drug discovery and material design, it is crucial to understand the mechanisms of transitions
between meta-stable states of molecular systems, such as protein folding (Salsbury Jr, 2010; Piana
et al., 2012), chemical reaction (Mulholland, 2005; Ahn et al., 2019), and nucleation (Thanh et al.,
2014; Beaupere et al., 2018). Molecular dynamics (MD) simulations have become one of the most
widely used tools for sampling these transitions. However, sampling transition paths with unbiased
MD simulations is computationally expensive due to high energy barriers, which cause an exponential
decay in the probability of making a transition (Pechukas, 1981).

To address this problem, researchers have developed enhanced sampling approaches such as steered
MD (SMD; Schlitter et al., 1994; Izrailev et al., 1999), umbrella sampling (Torrie & Valleau, 1977;
Kästner, 2011), meta-dynamics (Ensing et al., 2006; Branduardi et al., 2012; Bussi & Branduardi,
2015), adaptive biasing force (ABF; Comer et al., 2015), on-the-fly probability-enhanced sampling
(OPES; Invernizzi & Parrinello, 2020) methods. These methods utilize bias forces to facilitate
transitions across high energy barriers. They require collective variables (CVs), functions of atomic
coordinates designed to capture the slow degree of freedom. Although effective for simple systems,
the reliance on expensive domain knowledge limits the applicability of the methods to complex
systems where CVs are less understood.

Recently, machine learning has emerged as a promising paradigm for CV-free transition path sampling
(TPS) (Das et al., 2021; Lelièvre et al., 2023; Holdijk et al., 2024). The key idea is to parameterize
the bias force using a neural network and train it to sample transition paths directly via the biased MD
simulation. In particular, Lelièvre et al. (2023) considered reinforcement learning to sample paths
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escaping meta-stable states. Das et al. (2021); Hua et al. (2024); Holdijk et al. (2024) considered TPS
problem as minimizing the reverse Kullback-Leibler (KL) divergence between the path measures
induced by the biased MD and the target path measure. However, minimizing the reverse KL
divergence suffers from mode collapse, capturing only a subset of modes of the target distribution
(Vargas et al., 2023; Richter & Berner, 2024). Furthermore, Das et al. (2021); Lelièvre et al. (2023);
Hua et al. (2024); Holdijk et al. (2024) limited their evaluation to low-dimensional synthetic systems
or small peptides. Developing machine learning algorithms that generate accurate and diverse
transition pathways for complex molecular systems remains an open challenge.

Contribution. In this work, we propose the diffusion path sampler (DPS) to solve the transition
path sampling problem.1 Our approach, coined TPS-DPS, (1) trains the bias force by minimizing
a recently proposed log-variance divergence (Nüsken & Richter, 2021) between the path measure
induced by the biased MD and the target path measure, and (2) uses scale-based parameterization
of the bias force to handle large systems including fast-folding proteins. Specifically, to leverage
desirable properties of the log-variance divergence, such as robustness of gradient estimator and
degree of freedom in reference path measure, we propose to learn a control variate for reducing
the variance of gradient estimators and employ off-policy training scheme with replay buffer and
simulated annealing to improve sample efficiency and prevent the mode collapse.

We also introduce a new scale-based equivariant parameterization for the bias force to frequently
sample meaningful paths in training. Our key idea is to predict the atom-wise positive scaling factor
of displacement from current molecular states to the target meta-stable state. This guarantees the bias
force to decrease the distance between them for every MD step. We also use the Kabsch algorithm
(Kabsch, 1976) to align the current molecular states with the target meta-stable state, guaranteeing
SE(3) equivariance of bias force for better generalization across the states.

We extensively evaluate our method on the synthetic double-well potential with dual channels, Alanine
Dipeptide, and four fast-folding proteins: Chignolin, Trp-cage, BBA, and BBL (Lindorff-Larsen
et al., 2011). We compare TPS-DPS with the ML approach (PIPS; Holdijk et al., 2024), as well as
classical non-ML methods, e.g., steered MD (SMD; Schlitter et al., 1994; Izrailev et al., 1999). Our
experiments demonstrate that TPS-DPS consistently generates realistic and diverse transition paths,
similar to the ground truth ensemble. In addition, we do ablation studies of the proposed components.

2 RELATED WORK

Transition path sampling without ML. Metadynamics (Branduardi et al., 2012), on-the-fly
probability-enhanced sampling (OPES; Invernizzi & Parrinello, 2020), adaptive biasing force (ABF;
Comer et al., 2015), and steered molecular dynamics (SMD; Schlitter et al., 1994; Izrailev et al.,
1999) were introduced to explore molecular conformations that are difficult to access by unbiased
molecular dynamics (MD) within limited simulation times (Hénin et al., 2022). However, they mostly
rely on collective variables (CVs) for high-dimensional problems and are inapplicable to systems
with unknown CVs. To sample transition paths without CVs, Dellago et al. (1998) proposed shooting
methods that use the Markov chain Monte Carlo (MCMC) procedure on path space. However, these
methods often suffer from long mixing times in path space, which hinders the exploration of diverse
transition paths. Additionally, high rejection rates can further reduce their efficiency.

Data driven ML approaches. Recently, generative models have been used to sample new transition
paths given a dataset of transition paths. Petersen et al. (2023); Triplett & Lu (2023) and Lelièvre
et al. (2023) applied diffusion probabilistic models (Ho et al., 2020) and variational auto-encoders
(Kingma & Welling, 2013) for transition path sampling, respectively. However, these methods are
limited to small systems and struggle to collect data using unbiased MD simulations due to the high
energy barriers. Klein et al. (2024); Schreiner et al. (2024); Jing et al. (2024) proposed to accelerate
MD using time-coarsened dynamics, but the time-coarsened dynamics cannot capture the details of
the transition, e.g., the transition states. Duan et al. (2023); Kim et al. (2024) used neural networks to
generate transition states of a given chemical reaction, but cannot generate transition paths.

Data free ML approaches. Without a previously collected dataset, Das et al. (2021); Lelièvre
et al. (2023); Sipka et al. (2023); Hua et al. (2024); Holdijk et al. (2024) trained the bias forces to

1We coin our method diffusion path sampler since it samples paths using diffusion SDE, similar to diffusion
samplers (Zhang & Chen, 2022; Vargas et al., 2023) that use diffusion SDEs for sampling the final state.
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sample transition paths using the biased MD. Lelièvre et al. (2023) used reinforcement learning
to train the bias forces but focused on escaping an initial meta-stable state rather than targeting
a given meta-stable state. Sipka et al. (2023) used differentiable biased MD simulation to train
bias potential and introduce partial back-propagation and graph mini-batching techniques to resolve
computational issues in differentiable simulation. Das et al. (2021); Hua et al. (2024); Holdijk
et al. (2024) considered the TPS problem as minimizing the reverse KL divergence between path
distribution from biased MD and transition path distribution. Das et al. (2021); Hua et al. (2024)
limited their evaluation to low-dimensional synthetic systems. In this work, we mainly compare our
method with (PIPS; Holdijk et al., 2024). Concurrent to our work, Du et al. (2024) considered the TPS
problem as minimizing Doob’s Lagrangian objective with boundary constraints. They parameterized
marginal distribution as (mixture) Gaussian path distribution to satisfy the boundary constraints
without simulation in training time and sampled transition paths with the bias force derived from the
Fokker-Planck equation in inference time.

3 TRANSITION PATH SAMPLING WITH DIFFUSION PATH SAMPLERS

In this section, we introduce our method, coined transition path sampling with diffusion path
sampler (TPS-DPS). Our main idea is to formulate the transition path sampling (TPS) problem as a
minimization of the log-variance divergence (Nüsken & Richter, 2021) between two path measures:
the path measure induced by DPS and that of transition paths. Our main methodological contribution
is twofold: (1) a new off-policy training algorithm that minimizes the log-variance divergence with the
learnable control variate, replay buffer, and simulated annealing (2) a SE(3) equivariant scale-based
parameterization of the bias force that has an inductive bias for dense training signals in large systems.

3.1 PROBLEM SETUP
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State A

Figure 1: Problem setup. The sampled tran-
sition path (yellow dotted lines) from the state
A to the state B on the free energy landscape
of Alanine Dipeptide. We visualize the snap-
shots (white circles) of the transition path and
the transition state (white star).

Our goal is to sample transition paths from one meta-
stable state to another meta-stable state given a molec-
ular system. We provide an example of the problem
for Alanine Dipeptide in Figure 1. We view this as
a task to sample paths from an unbiased molecular
dynamics (MD) in Equation (1) conditioned on its
starting and ending points of initial and target meta-
stable states, respectively. To solve this task, we train
the bias force parameterized by a neural network to
amortize the sampling procedure.

Molecular dynamics. We consider a MD simulation
on time interval [0, T ], i.e., the motion of a molecular
state Xt = (Rt,Vt) ∈ R6N at time t where N is
the number of atoms, Rt ∈ R3N is the atom-wise
positions and Vt ∈ R3N is the atom-wise velocities.
In particular, we adopt Langevin dynamics (Bussi &
Parrinello, 2007) defined as the following SDE:

dXt = u(Xt)dt+ΣdWt, u(Xt) =

(
Vt,−

∇U(Rt)

m
− γVt

)
, Σ = diag

(
ζ,

√
2γkBλ

m

)
(1)

whereU , m, γ, kB , λ, and Wt denote the potential energy function, the atom-wise masses, the friction
term, the Boltzmann constant, the absolute temperature, and the Brownian motion, respectively, and
ζ ∈ R3N is a vector of positive infinitesimal values. MD in Equation (1) induces the path measure,
denoted by P0, which refers to the positive measure defined on measurable subsets of the path
space C([0, T ];R6N ) consisting of continuous functions X : [0, T ]→ R6N . The path (probability)
measure P0 induced by MD assigns high probability to a set of the probable paths when solving MD.

Transition path sampling. One of the challenges in sampling transition paths through unbiased MD
simulations is the meta-stability: a state remains trapped for a long time in the initial meta-stable
state A ⊆ R3N before transitioning into a distinct meta-stable state B ⊆ R3N . To capture the rare
event where transition from A to B occurs, we constrain paths X = (Xt)0≤t≤T sampled from
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unbiased MD to satisfy R0 ∈ A, RT ∈ B for a fixed time T . Since the meta-stable state A and B
are not well-specified for many molecular systems, we simplify this task by (1) fixing a local minima
RA,RB of the potential energy function in the meta-stable states A,B and (2) sampling a transition
path X that starts from the state R0 = RA and ends at the vicinity of RB.

To be specific, we aim to sample from the target path measure Q, which is obtained by reweighting
the path measure P0 with the (normalized) indicator function. The indicator function assigns zero
weight to paths that do not reach the vicinity of the target position RB. Formally, the reweighting
function is called the Radon–Nikodym derivative defined as follows:

dQ
dP0

(X) =
1B(X)

Z
, 1B(X) =

{
1 if ∥ρT ·RB −RT ∥ ≤ δ,
0 otherwise,

Z = EP0
[1B(X)] , (2)

where · denotes group action associated with the SE(3) space and ρT · RB is the aligned target
position by the optimal roto-translation ρT ∈ SE(3) to minimize its Euclidean distance to RT , i.e.,
ρT = argminρ∈SE(3)∥RT − ρ · RB∥. Such a transformation can be obtained from the Kabsch
algorithm in O(N) complexity (Kabsch, 1976).

Note that one may consider naïve rejection sampling to sample transition paths, based on running
unbiased MD to sample a path X from the path measure P0 and accepting if the path X arrives at
the neighborhood of the position RB with the radius δ. However, this method struggles to sample
transition paths of systems with high energy barriers since the sampled path by unbiased MD rarely
reaches the target states, i.e., the rejection ratio is too high.

3.2 LOG-VARIANCE MINIMIZATION

In this section, we propose our algorithm to amortize transition path sampling. Our key idea is to
train a neural network to induce a path measure that matches the target path measure Q, using the
log-variance divergence between the path measures. We propose a new training scheme to minimize
the log-variance divergence based on learning the control variate of its gradient and a replay buffer to
improve sample efficiency and diversity.

Amortizing transition path sampling with log-variance divergence. To match the target path
measure Q, we consider a biased MD defined by a policy v (or bias force b) as the following SDE:

dXt = (u(Xt) + Σv(Xt))dt+ΣdWt, v(Xt) = Σ−1

(
0,

b(Xt)

m

)
. (3)

We also let Pv denote the path measure induced by the SDE. To amortize transition path sampling,
we match the path measure Pvθ

of a parameterized policy vθ with the target path measure Q by
minimizing the log-variance divergence:

DP
LV(Pvθ

∥Q) = VP

[
log

dQ
dPvθ

]
= EP

[(
log

dQ
dPvθ

− EP

[
log

dQ
dPvθ

])2
]
, (4)

where P is an arbitrary reference path measure with EP[log(dQ/dPvθ
)] < ∞. To express the log-

variance divergence in detail, we let P = Pṽ for some policy ṽ and apply the Girsanov’s theorem to
Equation (4), deriving the following formulation:

DPṽ
LV(Pvθ

∥Q) = EPṽ

[
(Fvθ,ṽ − EPṽ

[Fvθ,ṽ])
2
]
, (5)

Fvθ,ṽ(X) =
1

2

∫ T

0

∥vθ(Xt)∥2dt−
∫ T

0

(vθ · ṽ)(Xt)dt−
∫ T

0

vθ(Xt) · dWt + log 1B(X). (6)

The first three terms in Equation (6) correspond to the deviation of the biased MD from the unbiased
MD integrated over the path sampled from Pṽ . The last term reweights the unbiased MD to the target
path measure Q. As a result, minimizing Equation (5) could be thought as minimizing the variation
between Pvθ

and Q. We provide the full derivation in Appendix A.1. Compared to KL divergence,
the log-variance divergence provides a robust gradient estimator and avoids differentiating through
the SDE solver (Richter et al., 2020; Nüsken & Richter, 2021).

Minimizing with learnable control variate. To minimize the log-variance divergence, we consider
the following loss that replaces the estimation of EPvθ

[Fvθ,vθ
] by learning a scalar parameter w:

L(θ, w) = EPvθ

[
(Fvθ,vθ

− w)2
]
, (7)
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Algorithm 1 Training

1: Initialize an empty replay buffer D̂, an policy vθ, a scalar parameter w, the number of rollout I
and training per rollout J , and an annealing schedule λstart = λ1 > · · · > λI = λend.

2: for i = 1, . . . , I do
3: Generate M paths {x(m)

0:L }Mm=1 from the biased MD simulations with vθ at temperature λi.
4: Update the replay buffer D̂ ← D̂ ∪ {x(m)

0:L }Mm=1.
5: for j = 1, . . . , J do
6: Sample K data {x(k)

0:L}Kk=1 from D̂.

7: Update θ and w with the gradient of 1
K

∑K
k=1

(
log

p0(x
(k)
0:L)1B(x

(k)
0:L)

pvθ
(x

(k)
0:L)

− w
)2

.

8: end for
9: end for

where w is a control variate that controls the variance of the gradient estimator of ∇θL(θ, w)
without changing the gradient. Note that we set ṽ = vθ in Equation (6), which implies that
the gradient of Equation (7) coincides with the KL divergence (Richter et al., 2020; Nüsken &
Richter, 2021). When optimized, the control variate w estimates the expectation EPvθ

[Fvθ,vθ
] since

argminw L(θ, w) = EPvθ
[Fvθ,vθ

]. Thus, jointly optimizing (θ, w) with the gradient step can be
interpreted as jointly minimizing log-variance divergence and estimating EPvθ

[Fvθ,vθ
] utilizing w.

Off-policy training with replay buffer and simulated annealing. To leverage the degree of freedom
in reference path measure for the log-variance divergence, we allow discrepancy between reference
path measure and current path measure, called off-policy training, which is widely used in discrete-
time reinforcement learning (Mnih et al., 2013; Bengio et al., 2021). For the sample efficiency, we
reuse the samples with a replay buffer D which stores path samples from the path measure Pvθ̄

associated with previous policies vθ̄. Our modified loss function LD with D is defined as follows:

LD(θ, w) = E(vθ̄,X)∼D[(Fvθ,vθ̄
(X)− w)2]. (8)

The replay buffer also prevents mode collapse, using diverse paths from different path measures.
Additionally, in line with other off-policy training algorithms (Malkin et al., 2022; Kim et al., 2023),
we utilize the simulated annealing technique to sample diverse paths that cross high-energy barriers.

Discretization. To implement the algorithm, we discretize Equation (8). Given a discretization step
size ∆t, we consider the discretized paths x0:L = (x0,x1, . . . ,xL) of X from MD simulations
where L = T/∆t and xℓ = X(ℓ∆t). In discrete cases, the discretized paths x0:L from previous
policies vθ̄ and their (gradient-detached) policy values (vθ̄(x0), ...,vθ̄(xL)) are used to approximate
the value Fvθ,vθ̄

(X) in Equation (6) as follows:

F̂vθ,vθ̄
(x0:L) =

1

2

L−1∑
ℓ=0

∥vθ(xℓ)∥2∆t−
L−1∑
ℓ=0

(vθ ·vθ̄)(xℓ)∆t−
L−1∑
ℓ=0

vθ(xℓ) · ϵℓ + log 1B(x0:L) , (9)

where the noise ϵℓ = Σ−1(xℓ+1−xℓ− (u(xℓ)+Σvθ̄(xℓ))∆t) is the discretized Brownian motions
of the Langevin dynamics with policy vθ̄. For implementation, we further derive a simple discretized
loss of Equation (8) from Equation (9) as follows:

Ex0:L∼D̂

[(
log

p0(x0:L)1B(x0:L)

pvθ
(x0:L)

− w
)2
]
, (10)

where the buffer D̂ stores paths x0:L sampled from the previous policies, and p0 and pvθ
denote

discrete time transition probability induced by Equations (1) and (3), respectively. We provide a
formal derivation of the discretized loss in Appendix A.2. Note that the same objective was derived
in the name of relative trajectory balance by Venkatraman et al. (2024).

We describe our training algorithm in Algorithm 1. Overall, our off-policy training algorithm iterates
through four steps: (1) sampling paths from the biased MD simulation with current policy vθ at high
temperature, (2) storing sampled paths in the replay buffer D̂, (3) sampling a batch of the paths from
the replay buffer, and (4) training current policy vθ by minimizing the loss in Equation (10). After
training, the biased MD simulation can directly sample transition paths from the target path measure.
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3.3 PARAMETERIZATION FOR LARGE SYSTEMS

In this section, we introduce new parameterizations of the bias force and the indicator function to
sample transition paths of large systems. Our parameterization is designed to alleviate the problem of
sparse training signal, where the model struggles to collect meaningful paths that end at the vicinity
of the target meta-stable state in training. This problem is especially severe in large systems.

Bias force parameterization. To frequently sample the meaningful paths, we aim to parameterize
the bias force which guarantees to reduce the distance between the current molecular state and the
target meta-stable state for every MD step. This is achieved by predicting the atom-wise positive
scaling factor of the direction to the aligned target meta-stable state rather than predicting force or
potential directly. Moreover, we design the bias force to satisfy roto-translational equivariance to the
current molecular state input Xt, aligning with the symmetry of the transition path sampling problem
for better generalization and parameter efficiency.

To be specific, we achieve the inductive bias for dense training signals and the SE(3) equivariance to
the current molecular state input Xt by parameterizing the bias force as follows:

b(Xt) = diag(sθ(ρ−1
t ·Xt))(ρt ·RB −Rt), (11)

where sθ(·) ∈ R3N
+ is a neural network constrained to have positive output elements and predicts

atom-wise scaling factors and the optimal roto-translation ρt = argminρ∈SE(3)∥Rt− ρ ·RB∥ which
aligns RB with Rt, as in Equation (2). We note that the bias force (divided by atom-wise masses) is
positively correlated with the direction to target state, i.e., (b(Xt)/m)⊤(ρt ·RB −Rt) > 0.

To formalize the benefit of the positive correlation between the bias force and the direction to the
target state, one can prove that there always exists a small enough step size ∆t that decreases the
distance between the current state Rt and the aligned target state ρ′t+∆t ·RB, i.e.,

∥ρ′t+∆t ·RB −R′
t+∆t∥ < ∥ρt ·RB −Rt∥, (12)

where R′
t+∆t = Rt + b(Xt)∆t/m is the position updated by the bias force with step size ∆t and

ρ′t+∆t = argminρ∈SE(3)∥R′
t+∆t−ρ ·RB∥. We provide the proof of Equation (12) in Appendix A.3.

In the experiments, we also consider other equivariant parameterizations that are less constrained: (1)
directly predicting the equivariant bias force b(Xt) = ρt ·bθ(ρ−1

t ·Xt) ∈ R3N and (2) predicting the
invariant bias potential bθ(ρ−1

t ·Xt) ∈ R to obtain the bias force b(Xt) = −∇bθ(ρ−1
t ·Xt) ∈ R3N .

We observe these two parameterizations to be useful for low-dimensional tasks but struggle to produce
meaningful paths in large systems during training. As shown in Figure 2, bias forces with the positive
scaling parameterization are positively correlated with the direction to the target position regardless
of network parameters, unlike direct force parameterizations.

(a) Direct prediction (b) Positive scaling

Figure 2: Visualization of the bias force
fields of two different bias force parameter-
izations with initialized neural networks.
(a) directly predicting the bias force and (b)
predicting the positive scaling factors of di-
rection to the target position (white circle).

Indicator function parameterization. We propose
to relax the indicator function 1B into a radial ba-
sis function (RBF) kernel 1̃B(X) = k(RT , ρ

−1 ·
RB;σ

2) which measures the similarity between two
positions where σ > 0 controls the degree of relax-
ation. The range of RBF kernel k is bounded by
the interval (0, 1] so that log 1̃B(X) is well-defined
and 1̃B(X) represents the binary indicator function
smoothly. To capture a high training signal from
subtrajectories of sampled paths, we propose to take
maximum over RBF kernel values of all intermediate
states by 1̃max

B (X) = maxt∈[0,T ] k(Rt, R̃B;σ
2). To

extract the subtrajectory with a high training signal,
we can truncate the paths at the time that maximizes
RBF kernel values, allowing variable path lengths.
Notably, the relaxed indicator function is SE(3) in-
variant to Rt because of the Kabsch algorithm.
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Table 1: Benchmark scores on the double-well system and Alanine Dipeptide. All metrics are
averaged over 1024 paths for the double-well system, and 64 paths for Alanine Dipeptide. ETS is
computed for paths that hit the target meta-stable state, and the best results are highlighted in bold.
Predicting the bias force, potential, and atom-wise positive scaling are denoted by (F), (P), and (S),
respectively. UMD (λ) denotes unbiased MD with temperature λ and SMD (k) denotes steered MD
with the force constant k. Unless otherwise specified, paths are generated by MD simulation at 1200K
for double-well and 300K for Alanine Dipeptide.

Method RMSD (↓) THP (↑) ETS (↓)
Å % kJmol−1

Double-well

UMD (1200K) 2.21 ± 0.10 0.00 -
UMD (2400K) 2.11 ± 0.38 3.03 1.69 ± 0.31
UMD (3600K) 1.85 ± 0.68 12.60 2.12 ± 0.41
UMD (4800K) 1.54 ± 0.81 21.58 2.77 ± 0.69
SMD (0.5) 0.98 ± 0.90 52.15 1.54 ± 0.21
SMD (1) 0.14 ± 0.08 99.80 1.85 ± 0.16
TPS-DPS (F, Ours) 0.01 ± 0.02 99.90 1.38 ± 0.16
TPS-DPS (P, Ours) 0.01 ± 0.03 99.71 1.36 ± 0.15
TPS-DPS (S, Ours) 0.01 ± 0.03 99.80 1.73 ± 0.20

Method RMSD (↓) THP (↑) ETS (↓)
Å % kJmol−1

Alanine Dipeptide

UMD (300K) 1.59 ± 0.15 0.00 -
UMD (3600K) 1.19 ± 0.32 6.25 812.47 ± 148.80
SMD (10) 0.86 ± 0.21 7.81 33.15 ± 6.46
SMD (20) 0.56 ± 0.27 54.69 78.40 ± 12.76
PIPS (F) 0.66 ± 0.15 43.75 28.17 ± 10.86
PIPS (P) 1.66 ± 0.03 0.00 -
TPS-DPS (F, Ours) 0.16 ± 0.06 92.19 19.82 ± 15.88
TPS-DPS (P, Ours) 0.16 ± 0.10 87.50 18.37 ± 10.86
TPS-DPS (S, Ours) 0.25 ± 0.20 76.00 22.79 ± 13.57
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Figure 3: Visualization of potential energy landscapes and distributions in double-well potential.
(a) Visualization of the learned bias potential bθ of TPS-DPS (P). (b) Distributions of the potential
energy and y coordinate of transition states from 1024 transition paths sampled by each method.

4 EXPERIMENT

In this section, we compare our method, termed TPS-DPS, with both classical non-ML and ML
approaches, assessing the accuracy and diversity of sampled transition paths. We begin with the
double-well system and Alanine Dipeptide followed by the four fast-folding proteins: Chignolin,
Trp-cage, BBA, and BBL. Additionally, we conduct ablation studies to validate the effectiveness of
each component in our method. All real-world molecular systems are simulated using the OpenMM
library (Eastman et al., 2023). Details on OpenMM simulation and model configurations are provided
in Appendices B.1 and B.2, respectively. In Appendix C, we analyze the time complexity of TPS-DPS
and evaluate the number of energy evaluations and runtime in training and inference time.

Evaluation Metrics. We consider three metrics to evaluate models: (Kabsch) RMSD, THP, and ETS.
The root mean square distance (RMSD) measures the ability of the model to produce final positions
of paths close to the target position RB. The target hit percentage (THP) measures the ability of the
model to produce final positions of paths that successfully arrive at the target meta-stable state B.
Finally, the energy of the transition state (ETS) measures the ability of the model to identify probable
transition states. For further details, refer to Appendix B.3.

Baselines. We compare TPS-DPS with both non-ML and ML baselines. For non-ML baselines, we
consider unbiased MD (UMD) with various temperatures and steered MD (SMD; Schlitter et al.,
1994; Izrailev et al., 1999) with various force constants and collective variables (CVs). For ML
baselines, we consider a CV-free transition path sampling method, path integral path sampling (PIPS;
Holdijk et al., 2024) which also trains a bias force by minimizing the KL divergence between path
measures induced by the biased MD and the target path measure.
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Figure 4: Visualization of sampled paths on energy landscapes. For the double-well system, we
aim to sample transition paths from the left meta-stable state to the right on the potential energy
landscape (top). For Alanine Dipeptide, we aim to sample conformational changes from the C5
(upper left) to the C7ax (lower right) on the Ramachandran plot (bottom). White circles and stars
indicate meta-stable states and saddle points, respectively.

4.1 DOUBLE-WELL SYSTEM

We begin by evaluating our method on a synthetic two-dimensional double-well system with dual
channels. This system has two global minima representing the meta-stable states and two reaction
pathways with the corresponding saddle points. We aim to sample transition paths from the left
state RA to the right meta-stable states B = {R | ∥R−RB∥ < 0.5}. We collect ground truth path
ensembles by rejection sampling which proposes paths sampled from the unbiased MD simulations
and accepts if the final states are in the target meta-stable states B. We provide more details on the
double-well system in Appendix B.4.

As shown in Table 1, Figure 3, and Figure 4, TPS-DPS outperforms baselines regardless of the
bias force parameterizations and generates more similar transition paths to the ground truth than
baselines. In Figure 3, the bias potential accelerates the transition by increasing the potential energy
near the initial meta-stable state while decreasing the potential energy near the two energy barriers.
Moreover, the distribution of energy and y coordinate of the transition states from TPS-DPS is closest
to the ground truth compared with other baselines, successfully capturing two reaction channels. In
Figure 4, TPS-DPS (F) and (P) generate similar transition paths to the ground truth while UMD at
1200K fails to escape the initial state and SMD struggles to pass the saddle points.

4.2 ALANINE DIPEPTIDE

For real-world molecules, we first consider Alanine Dipeptide consisting of two alanine residues
and aim to sample conformational changes from the meta-stable state C5 to C7ax as shown in
Figure 4. The target meta-stable states are defined as B = {R | ∥ξ(R)− ξ(RB)∥ < 0.75}, where
ξ(R) = (ϕ, ψ) is a well-known collective variable which consists of two backbone dihedral angles.
Alanine Dipeptide has two reaction channels with the corresponding saddle points.

In Table 1 and Figure 4, our method shows superior performance regardless of the bias force
parameterizations and successfully generates diverse transition paths that capture two reaction
channels. Compared to our method, UMD at 300K fails to escape the initial state, SMD with the two
backbone torsion CV generates transition paths with less probable transition states, and two-way
shooting struggles to find plausible transition states. PIPS generates transition paths with only one
reaction channel, suffering from mode collapse.
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Table 2: Benchmark scores on fast-folding proteins. All metrics are averaged over 64 paths. Unless
otherwise specified, paths are generated at 300K for Chignolin and 400K for the others.

Method RMSD (↓) THP (↑) ETS (↓)
Å % kJmol−1

Chignolin

UMD (300K) 7.98 ± 0.41 0.00 -
UMD (1200K) 7.23 ± 0.93 1.56 388.17
SMD (10k) 1.26 ± 0.31 6.25 -527.95 ± 93.58
SMD (20k) 0.85 ± 0.24 34.38 179.52 ± 138.87
PIPS (F) 4.66 ± 0.17 0.00 -
PIPS (P) 4.67 ± 0.32 0.00 -
TPS-DPS (F, Ours) 4.41 ± 0.49 0.00 -
TPS-DPS (P, Ours) 3.87 ± 0.42 0.00 -
TPS-DPS (S, Ours) 1.17 ± 0.66 59.38 -780.18 ± 216.93

BBA

UMD (400K) 10.03 ± 0.39 0.00 -
UMD (1200K) 10.81 ± 1.05 0.00 -
SMD (10k) 2.89 ± 0.32 0.00 -
SMD (20k) 1.66 ± 0.30 26.56 -3104.95 ± 97.57
PIPS (F) 9.84 ± 0.18 0.00 -
PIPS (P) 9.09 ± 0.36 0.00 -
TPS-DPS (F, Ours) 9.48 ± 0.18 0.00 -
TPS-DPS (P, Ours) 3.89 ± 0.35 0.00 -
TPS-DPS (S, Ours) 1.21 ± 0.09 84.38 -3801.68 ± 139.38

Method RMSD (↓) THP (↑) ETS (↓)
Å % kJmol−1

Trp-cage

UMD (400K) 7.94 ± 0.65 0.00 -
UMD (1200K) 8.27 ± 1.13 0.00 -
SMD (10k) 1.68 ± 0.23 3.12 -312.54 ± 20.67
SMD (20k) 1.20 ± 0.20 42.19 -226.40 ± 85.59
PIPS (F) 7.47 ± 0.19 0.00 -
PIPS (P) 6.07 ± 0.26 0.00 -
TPS-DPS (F, Ours) 6.35 ± 0.31 0.00 -
TPS-DPS (P, Ours) 3.15 ± 0.52 12.50 -512.97 ± 56.89
TPS-DPS (S, Ours) 0.76 ± 0.12 81.25 -317.61 ± 140.89

BBL

UMD (400K) 18.48 ± 0.63 0.00 -
UMD (1200K) 18.90 ± 1.16 0.00 -
SMD (10k) 3.67 ± 0.22 0.00 -
SMD (20k) 2.97 ± 0.33 7.81 -1738.57 ± 386.81
PIPS (F) 17.92 ± 0.29 0.00 -
PIPS (P) 12.67 ± 0.31 0.00 -
TPS-DPS (F, Ours) 10.15 ± 0.54 0.00 -
TPS-DPS (P, Ours) 6.45 ± 0.26 0.00 -
TPS-DPS (S, Ours) 1.60 ± 0.19 43.75 -3616.32 ± 213.66

(a) Alanine Dipeptide

(b) Chignolin

ASP3OD-THR6OG

ASP3N-THR68O

`
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(c) Visualization of Chignolin

Figure 5: Qualitative evaluation on transition path sampled from TPS-DPS. (a) Potential energy
and the two backbone dihedral angle distances between the current and target states. (b) Potential
energy and the two hydrogen bond distances between the current and the target state. (c) Visualization
of hydrogen bond formation in Chignolin. We highlight each hydrogen bond in green and yellow.

4.3 FAST-FOLDING PROTEINS

Finally, for challenging molecules, we consider four fast-folding proteins (Lindorff-Larsen et al.,
2011): Chignolin, Trp-cage, BBA, and BBL with 10, 20, 28, and 47 amino acids, respectively. Proteins
fold into stable structures by forming networks of hydrogen bonds. We aim to sample protein folding
processes as seen in Figure 7. We define the target meta-stable state as B = {R | ∥ξ(R)− ξ(RB)∥ <
0.75} where ξ consists of the top two components of time-lagged independent component analysis
(TICA; Pérez-Hernández et al., 2013). We further describe TICA in Appendix B.4.

As shown in Table 2 and Figure 7, only TPS-DPS (S) successfully samples transition paths that pass
probable transition states while TPS-DPS (F) and TPS-DPS (P) fail to hit the target meta-stable state
due to the lack of meaningful training signal. While SMD hits the target meta-stable, its transition
paths pass less probable transition states. UMD and PIPS fail to hit the target meta-stable state. In
Figure 5, we validate the sampled paths using the potential energy and donor-acceptor distance of
the two key hydrogen bonds in Chignolin folding, ASP3OD-THR6OG and ASP3N-THR8O used in
(Yang et al., 2024). The sampled path of reduces the donor-acceptor distance below the threshold
3.5Å. For 3D videos of transition paths of fast-folding proteins, we refer to project page.
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Method RMSD (↓) THP (↑) ETS (↓)
Å % kJmol−1

Ours 0.16 ± 0.06 92.19 19.82 ± 15.88
w/ KL 0.43 ± 0.34 53.12 27.88 ± 14.38
w/ local 0.24 ± 0.15 73.44 22.53 ± 14.45
w/o replay 0.33 ± 0.27 64.06 24.38 ± 12.31
w/o annealing 0.67 ± 0.21 9.38 69.86 ± 30.15
w/o various len 0.23 ± 0.11 75.00 29.49 ± 14.13
w/o equivariance 0.34 ± 0.17 56.25 22.12 ± 16.96

(a) Component-wise performance on Alanine Dipeptide.
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(b) Loss and RMSD curves over rollouts.

Figure 6: Ablation studies on each proposed component of TPS-DPS (F) in Alanine Dipeptide.
(a) Benchmark scores on Alanine Dipeptide. (b) Loss and RMSD curves averaged over 8 seeds.

4.4 ABLATION STUDY

We conduct ablation studies to verify the effectiveness of the six proposed components: log-variance
loss, learnable control variate, replay buffer, simulated annealing, maximum over RBF values for
various path lengths, and SE(3) equivariance. To be specific, we (1) replace the log-variance
divergence with the KL divergence, (2) replace the learnable control variate w ∈ R with the local
control variate which is Monte-Carlo estimator used in Nüsken & Richter (2021), (3) remove the
replay buffer and rely solely on data from the current policy, (4) use only one temperature λ = 300K
in sampling, (5) remove maximum operation over RBF kernel values using only the final state, (6)
skip the alignment of neural network input states with the target position by the Kabsch algorithm.

As seen in Figure 6, all the proposed components improve performance. Our loss is smaller than
the KL divergence by more than two orders of magnitude and significantly improves performance.
Learning the control variate slightly improves performance, showing that utilizing data from previous
policies is effective. The replay buffer significantly improves training efficiency, and shows that
the large performance gap between our loss and KL divergence comes from the replay buffer.
Simulated annealing for biased MD simulation is critical to finding transition paths. RMSD does not
decrease without simulated annealing while loss decreases significantly. For the relaxed indicator
function, maximum operation accelerates convergence and improves performance with frequent
training signals from the subtrajectories. Leveraging the symmetry of the bias force with the Kabsch
algorithm improves performance. We further compare with reverse KL divergence in Appendix E.

5 CONCLUSION

In this work, we introduced a novel CV-free diffusion path sampler, called TPS-DPS, to amortize the
cost of sampling transition paths. We propose the log-variance divergence with the learnable control
variate and off-policy training with the replay buffer and simulated annealing. We propose a new
scale-based equivariant parameterization of bias force and relaxed indicator function for reaching
target meta-stable states and frequent training signals, particularly in large molecules. Evaluations on
double-well, Alanine Dipeptide, and four fast-folding proteins demonstrate that TPS-DPS is superior
in accuracy and diversity compared to non-ML and ML approaches.

Limitation. While our experiments show promise, they are limited to small fast-folding proteins (up
to 50 amino acids). The applicability of our method to real-world proteins with more than 500 amino
acids remains unexplored. Additionally, integrating various libraries, such as PLUMED (plu, 2019)
and DMFF (Wang et al., 2023), for MD with neural network bias force, has not yet been investigated.

Our method does not generalize across unseen pairs of meta-stable states or different molecular
systems. These points to an interesting venue for future research, which would be more appealing for
practical applications in drug discovery or material design.
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A METHOD DETAILS

A.1 LOG VARIANCE FORMULATION

In this section, we derive Equation (5) from Equation (4) to get the explicit expression for log-variance
divergence in terms of SDE in Equation (1) and Equation (3). We refer to Nüsken & Richter (2021,
Appendix A.1) for the derivation in more general settings.

Our goal is to derive that

EPṽ

[(
log

dQ
dPvθ

− EPṽ

[
log

dQ
dPvθ

])2
]
= EPṽ

[
(Fvθ,ṽ − EPṽ

[Fvθ,ṽ])
2
]
, (13)

To this end, we focus on calculating log dQ
dPvθ

(X) when X ∼ Pṽ. Following (Nüsken & Richter,

2021, Lemma A.1), we apply Girsanov’s Theorem to calculate the Radon-Nikodym derivative dPvθ

dP0

as follows:

dPvθ

dP0
(X) = exp

(∫ T

0

(vT
θ Σ

−1)(Xt) · dXt −
∫ T

0

(Σ−1u · vθ)(Xt)dt−
1

2

∫ T

0

∥vθ(Xt)∥2dt
)
.

(14)
Since the state Xt follows the SDE dXt = (u(Xt) + Σṽ(Xt))dt + ΣdWt. We plug it into
Equation (14) and utilize the definition of the target path measure Q in Equation (2) to compute
log dQ

dP0
as follows:

log
dQ
dPvθ

(X) = log
dQ
dP0

dP0

dPvθ

(X) (15)

= log 1B(X)− logZ −
∫ T

0

(vT
θ Σ

−1)(Xt) · dXt (16)

+

∫ T

0

(Σ−1u · vθ)(Xt)dt+
1

2

∫ T

0

∥vθ(Xt)∥2dt (17)

= log 1B(X)− logZ −
∫ T

0

(vθ · ṽ)(Xt)dt (18)

−
∫ T

0

vθ(Xt) · dWt +
1

2

∫ T

0

∥vθ(Xt)∥2dt (19)

= Fvθ,ṽ(X)− logZ (20)

Since logZ is the constant, it is canceled out in the log-variance divergence as follows:

EPṽ

[(
log

dQ
dPvθ

− EPṽ

[
log

dQ
dPvθ

])2
]
= EPṽ

[
(Fvθ,ṽ − EPṽ

[Fvθ,ṽ])
2
]
, (21)

A.2 CONNECTION TO EXISTING LOSS FUNCTIONS ON DISCRETE-TIME DOMAIN

In this section, we connect our discretized loss of Equation (8) to the loss function, called relative
trajectory balance (Venkatraman et al., 2024, RTB). Like our methods, RTB also amortized inference
in target path distribution by training forward distribution on discrete-time domains such as vision,
language, and control tasks. When discretized, our loss function is equivalent to the RTB objective.

Our goal is to show that for every paths x0:L sampled from the path measure Pvθ̄
,

(F̂vθ,vθ̄
(x0:L)− w)2 =

(
log

p0(x0:L)1B(x0:L)

Zθpvθ
(x0:L)

)2

, (22)

where w = logZθ is a learnable scalar parameter, and path distribution pv(x0:L) =∏L−1
ℓ=0 pv(xl+1|xl) is Markovian, and its transition kernel pv(xl+1|xl) are derived from Euler-

Maruyama discretization of the SDE in Equation (3) as follows:

xl+1 = xl + u(xl)∆t+Σv(xl)∆t+Σϵl, (23)
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where ϵl ∼ N (0,∆t). To this end, we can calculate as follows:
log p0(x0:L)− log pvθ

(x0:L) (24)

=

L−1∑
ℓ=0

log pvθ
(xl+1|xl)−

L−1∑
ℓ=0

log p0(xl+1|xl) (25)

=
1

2

L−1∑
ℓ=0

(Σvθ̄∆t+Σϵl − Σvθ∆t)
T (ΣTΣ∆t)−1(Σvθ̄∆t+Σϵl − Σvθ∆t) (26)

− 1

2

L−1∑
ℓ=0

(Σvθ̄∆t+Σϵl)
T (ΣTΣ∆t)−1(Σvθ̄∆t+Σϵl) (27)

=
1

2∆t

L−1∑
ℓ=0

(∥vθ̄∆t+ ϵl − vθ∆t∥2 − ∥vθ̄∆t+ ϵl∥2) (28)

=
1

2

L−1∑
ℓ=0

∥vθ(xℓ)∥2∆t−
L−1∑
ℓ=0

(vθ · vθ̄)(xℓ)∆t−
L−1∑
ℓ=0

vθ(xℓ) · ϵℓ (29)

= F̂vθ,vθ̄
(x0:L)− log 1B(x0:L) (30)

which implies

F̂vθ,vθ̄
(x0:L) = log

p0(x0:L)1B(x0:L)

pvθ
(x0:L)

, (31)

by subtracting w and squaring both sides, we have

(F̂vθ,vθ̄
(x0:L)− w)2 =

(
log

p0(x0:L)1B(x0:L)

Zθpvθ
(x0:L)

)2

(32)

We can view p0(x0:L)1B(x0:L) as the unnormalized target distribution discretized from the target
path measure Q, and Zθ as the estimator for normalizing constant Z =

∫
p0(x0:L)1B(x0:L)dx0:L,

and pvθ
(x0:L) as forward probability distribution to amortize inference in the target distribution.

Based on these results, we provide our training algorithm in Algorithm 1.

A.3 PROOF OF SCALE-BASED PARAMETERIZATION

In this section, we prove that our scale-based parameterization of bias force strictly decreases the
distance to the (aligned) target position for small step sizes, improving the ability to find informative
paths in large molecules.
Proposition 1. Consider the molecular state Rt at the t-th time step and the next state R′

t+∆t = Rt+

b(Xt)∆t/m updated by step size ∆t and the bias force b(Xt) = diag(sθ(ρ−1
t ·Xt))(ρt ·RB−Rt).

Then there always exists a small enough ∆t that strictly decreases the distance towards the target
state RB:

∥ρ′t+∆t ·RB −R′
t+∆t∥ < ∥ρt ·RB −Rt∥, (33)

where ρ′t+∆t = argminρ∈SE(3)∥ρ ·RB−R′
t+∆t∥ and we assume that there does not exist a rotation

that exactly aligns the current molecular state to the target state, i.e., ∥ρt ·RB −Rt∥ > 0.

Proof. The proof consists of two steps. We first show the (strictly) positive correlation between the
bias force and the direction from the t-th state Rt to the target state RB. Next, we show that the
positive correlation gaurantees a strict decrease in distance between the states, i.e., ∥ρt ·RB −Rt∥,
given that the distance was not already zero.

Step 1: First, we show that the bias force (divided by atom-wise masses) is positively correlated with
the direction to the target position, i.e., (b(Xt)/m)⊤(ρt ·RB −Rt) > 0. This follows from:

(b(Xt)/m)⊤(ρt ·RB −Rt) = (ρt ·RB −Rt)
T diag(sθ(ρ−1

t ·Xt))

m
(ρt ·RB −Rt) (34)

=

3N∑
i=1

(
si
mi

)
(ρt ·RB −Rt)

2
i > 0, (35)
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where si > 0 is the i-th element of sθ(ρ−1
t ·Xt) and (ρt ·RB −Rt)i is the i-th element of the

direction to the target position.

Step 2: Next, we show that the positive correlation ensures distance reduction for a small enough
step size. Consider the squared distance between the target position ρt ·RB and updated position R′

by bias force

∥ρt ·RB −R′
t+∆t∥2

= ∥ρt ·RB − (Rt + b(Xt)∆t/m)∥2 (36)

= ∥(ρt ·RB −Rt)− b(Xt)∆t/m∥2 (37)

= ∥ρt ·RB −Rt∥2 − 2∆t(b(Xt)/m)⊤(ρt ·RB −Rt) + (∆t)2∥b(Xt)/m∥2. (38)

Due to step 1, i.e., (b(Xt)/m)⊤(ρt ·RB −Rt) > 0, there exists a step size ∆t satisfying:

0 < ∆t <
2(b(Xt)/m)⊤(ρt ·RB −Rt)

∥b(Xt)/m∥2
. (39)

With this choice of ∆t, multiplying ∆t∥b(Xt)/m∥2 leads to the following inequaliity:

(∆t)2∥b(Xt)/m∥2 < 2∆t(b(Xt)/m)⊤(ρt ·RB −Rt). (40)

By subtracting the right-hand side from both sides and adding ∥ρt ·RB −Rt∥2 to both sides, we
have the following inequality:

∥ρt ·RB −R′
t+∆t∥2 < ∥ρt ·RB −Rt∥2. (41)

Taking the square root of both sides, we have the following inequality:

∥ρ′t+∆t ·RB −R′
t+∆t∥ ≤ ∥ρt ·RB −R′

t+∆t∥ < ∥ρt ·RB −Rt∥, (42)

where the first inequality follows from the definition of ρ′t+∆t = argminρ∈SE(3)∥ρ ·RB −R′
t+∆t∥.

This completes the proof.
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B EXPERIMENT DETAILS

B.1 OPENMM CONFIGURATIONS

For real-world molecules, we use the VVVR integrator (Sivak et al., 2014) with the step size ∆t = 1 fs
and the friction term γ = 1 ps−1. In the TPS-DPS training algorithm, we simulate MD with T = 1ps
for Alanine Dipeptide and T = 5ps for the fast-folding proteins. We start simulations at a temperature
λstart = 600K, and end at a temperature λend = 300K for Alanine Dipeptide and Chignolin and
λend = 400K for the others. We use the amber99sbildn (Lindorff-Larsen et al., 2010) force field
for Alanine Dipeptide in vacuum and the ff14SBonlysc (Maier et al., 2015) force field for the
fast-folding proteins with the gbn2 implicit solvation model (Nguyen et al., 2013).

B.2 MODEL CONFIGURATIONS

We use a 3-layer MLP for the double-well system, and a 6-layer MLP for real-world molecules
with ReLU activation functions for neural bias force, potential, and scale. To constrain the output
of the neural bias scale parameterization to a positive value, we apply Softplus to the MLP output.
As an input to the neural network, we concatenate the current position (Rt)i of the i-th atom with
its distance to the target position di = ∥(R̃B)i − (Rt)i∥2. For real-world molecules, we apply the
Kabsch algorithm (Kabsch, 1976) for heavy atoms to align RB with Rt. We update the parameters
of the neural network with a learning rate of 0.0001, while the scalar parameter w is updated with a
learning rate of 0.001. We clip the gradient norm with 1 to prevent loss from exploding. we train
J = 1000 times per rollout. We report other model configurations in Table 3. For PIPS, we use the
model configurations reported by Holdijk et al. (2024). For CVs of SMD, we use backbone dihedral
angles (ϕ, ψ) for Alanine Dipeptide and RMSD for fast-folding proteins.

Table 3: Model configurations of TPS-DPS.

System # of rollouts (I) # of samples (M ) Batch size (K) Buffer size Relaxation (σ)

Double-well 20 512 512 10000 3
Alanine Dipeptide 1000 16 16 1000 0.1
Chignolin 100 16 4 200 0.5
Trpcage 100 16 4 100 0.5
BBA 100 16 4 100 0.5
BBL 100 16 2 100 0.5

B.3 EVALUATION METRICS

Root mean square distance (RMSD). We use the Kabsch algorithm (Kabsch, 1976) for heavy
atoms to align the final position with the target position RB, using the optimal (proper) rotation and
translation to superimpose two heavy atom positions. We calculate RMSD between heavy atoms of
the final position and the target position RB.

Target hit percentage (THP). THP measures the success rate of paths arriving at the target meta-
stable state B in a binary manner. Formally, given the final positions {R(i)}Mi=1 of M paths, THP is
defined as follows:

THP =
|{i : R(i) ∈ B}|

M
(43)

Energy of transition state (ETS). ETS measures the ability of the method to find probable transition
states when crossing the energy barrier. ETS refers to the maximum potential energy among states in
a transition path. Formally, given a transition path x0:L of length L that reaches the target meta-stable
state i.e., RL ∈ B, ETS is defined as follows:

ETS(x0:L) = max
ℓ∈[0,L]

U(Rℓ) (44)
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B.4 SYSTEM DETAILS

Systhetic double-well system. Double-well system follows the overdamped Langevin dynamics
defined as follows:

dRt =
−∇U(Rt)

m
dt+

√
2γkBλ

m
dWt . (45)

For simplicity, we let R = (x, y) ∈ R2, m = I, γ = 1,∆ = 0.01, T = 10, and λ = 1200K. To
evaluate the ability to find diverse transition paths, we consider the following double-well potential
(Hua et al., 2024):

U(x, y) =
1

6

(
4(1− x2 − y2)2 + 2(x2 − 2)2 + [(x+ y)2 − 1]2 + [(x− y)2 − 1]2 − 2

)
. (46)

This potential has global minima and two saddle points, having two meta-stable states and two
reaction channels.

Time-lagged independent components (TICA). To extract the collective variable (CV) for the
four fast-folding proteins, we consider components of time-lagged independent component analysis
(TICA; Pérez-Hernández et al., 2013). We run 1µs unbiased MD simulations with 2fs step size
and record states per 2ps to collect MD trajectories, using the OpenMM library with the same
configuration as in Appendix B.1. For the top two TICA components, we use PyEMMA library
(Scherer et al., 2015) with a time lag τ = 500ps for Chignolin τ = 200ps for the others.

Reproducibility. We describe experiment details in Appendix B, including detailed simulation
configuration and hyper-parameters. In the anonymous link, we provide the code for TPS-DPS.
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C COMPUTATIONAL COST

In this section, we analyze the time complexity of TPS-DPS and provide the number of energy
evaluations and runtime in training and inference time for real molecules.

The training and inference time complexity of TPS-DPS is O(NMLJ) and O(NML), respectively,
where N is the number of atoms, M is the number of samples, L is the number of MD steps, and J
is the number of rollouts. To be specific, training consists of biased MD simulations with O(NML)
time complexity. Given M , the total complexity of one biased MD step is O(N).

To justify it, we note that the biased MD step consists of three stages: (1) calculating bias force, (2)
calculating OpenMM force field, and (3) integrating the biased MD. Given the number of layers, and
hidden units, MLP for bias force requires O(N) and the Kabsch algorithm for equivariance requires
O(N). Calculating force with cut-off and integrating MD with VVVR integrator also requires O(N).

To measure computational cost, we consider the number of energy evaluations and runtime per rollout
in training and inference time. As shown in Table 4, the inference cost of TPS-DPS is proportional to
UMD and SMD which have time complexity O(NML). TPS-DPS requires less energy evaluations
than PIPS in training since TPS-DPS finds transition paths faster than PIPS by utilizing the replay
buffer and simulated annealing.

Table 4: Cost comparison. EET and EEI refer to the number of energy evaluations by the OpenMM
library in training and inference, respectively. RT and RI denote runtime (second) per rollout in
training and inference on a single RTX A5000 GPU. MD simulations are conducted with T = 1ps
for Alanine Dipeptide, T = 5ps for other systems, and ∆t = 1fs. The number of samples for
each training rollout and inference is 16 and 64, respectively. Other configurations of TPS-DPS are
provided in Appendix B.2 and those of PIPS can be found in (Holdijk et al., 2024)

Molecule Method EET (↓) EEI (↓) RT (↓) RI (↓)

Alanine Dipeptide

UMD - 64K - 29.49
SMD - 64K - 47.45
PIPS (F) 240M 64K 44.22 71.05
PIPS (P) 240M 64K 50.54 75.67
TPS-DPS (F, Ours) 16M 64K 24.93 70.50
TPS-DPS (P, Ours) 16M 64K 27.25 78.83
TPS-DPS (S, Ours) 16M 64K 25.11 73.04

Chignolin

UMD - 320K - 224.23
SMD - 320K - 380.37
PIPS (F) 40M 320K 277.29 565.58
PIPS (P) 40M 320K 317.08 622.87
TPS-DPS (F, Ours) 8M 320K 209.29 562.90
TPS-DPS (P, Ours) 8M 320K 224.36 623.63
TPS-DPS (S, Ours) 8M 320K 215.18 581.26

Trp-Cage

UMD - 320K - 258.29
SMD - 320K - 323.52
PIPS (F) 40M 320K 360.55 652.59
PIPS (P) 40M 320K 417.93 718.05
TPS-DPS (F, Ours) 8M 320K 289.10 655.22
TPS-DPS (P, Ours) 8M 320K 301.76 699.44
TPS-DPS (S, Ours) 8M 320K 293.51 673.00

BBA

UMD - 320K - 395.12
SMD - 320K - 551.04
PIPS (F) 40M 320K 506.57 1080.62
PIPS (P) 40M 320K 574.07 1117.74
TPS-DPS (F, Ours) 8M 320K 422.23 1042.81
TPS-DPS (P, Ours) 8M 320K 430.24 1091.97
TPS-DPS (S, Ours) 8M 320K 426.48 1068.68

BBL

UMD - 320K - 673.55
SMD - 320K - 853.77
PIPS (F) 40M 320K 622.22 1558.53
PIPS (P) 40M 320K 660.02 1612.78
TPS-DPS (F, Ours) 8M 320K 560.95 1520.05
TPS-DPS (P, Ours) 8M 320K 572.77 1607.62
TPS-DPS (S, Ours) 8M 320K 563.45 1553.89
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D VISUALIZATION OF SAMPLED PATHS OF FAST FOLDING PROTEINS

(a) UMD (b) SMD (20k) (c) PIPS (P) (d) TPS-DPS (F) (e) TPS-DPS (P) (f) TPS-DPS (S)

Figure 7: Visualization of sampled paths of four fast-folding proteins on free energy landscapes
for top two TICA components. We aim to sample folding processes for the four fast folding proteins:
Chignolin, Trpcage, BBA, and BBL (from top to bottom rows).
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E COMPARISION WITH REVERSE KL DIVERGENCE

Table 5: Benchmark scores of reverse KL divergence and TPS-DPS on Alanine Dipeptide system.
Metrics are averaged over 64 paths. TPS-DPS consistently outperforms reverse KL divergence on all
metrics regardless of predicting bias force or potential.

Method RMSD (↓) THP (↑) ETS (↓)
Å % kJmol−1

Reverse KL (F) 0.43 ± 0.34 53.12 27.88 ± 14.38
Reverse KL (P) 0.58 ± 0.34 48.43 21.61 ± 11.76
TPS-DPS (F, Ours) 0.16 ± 0.06 92.19 19.82 ± 15.88
TPS-DPS (P, Ours) 0.16 ± 0.10 87.50 18.37 ± 10.86

(a) Reverse KL (F) (b) Reverse KL (P) (c) TPS-DPS (F) (d) TPS-DPS (P)

Figure 8: Visualization of sampled paths of Alanine Dipeptide on the Ramachandran plot. The
reverse KL divergence struggles to find diverse reaction channels suffering from mode collapse issues
while the log-variance divergence of our method can capture two reaction channels and reach the
target states better.

22


	Introduction
	Related work
	Transition path sampling with diffusion path samplers
	Problem setup
	Log-variance minimization
	Parameterization for large systems

	Experiment
	Double-well system
	Alanine Dipeptide
	Fast-folding Proteins
	Ablation study

	Conclusion
	Method details
	Log variance formulation
	Connection to existing loss functions on discrete-time domain
	Proof of scale-based parameterization

	Experiment details
	OpenMM configurations
	Model configurations
	Evaluation metrics
	System details

	Computational cost
	Visualization of sampled paths of fast folding proteins
	Comparision with reverse KL divergence

